Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,9 @@ from PyPDF2 import PdfReader
|
|
6 |
import docx
|
7 |
import re
|
8 |
import google.generativeai as genai
|
|
|
9 |
import concurrent.futures
|
|
|
10 |
|
11 |
# Load pre-trained embedding model for basic analysis
|
12 |
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
@@ -82,27 +84,40 @@ def extract_text_from_file(file_path):
|
|
82 |
return ""
|
83 |
|
84 |
def analyze_with_gemini(resume_text, job_desc):
|
85 |
-
# Modified prompt to have Gemini calculate match percentage
|
86 |
prompt = f"""
|
87 |
-
Analyze the
|
88 |
Resume: {resume_text}
|
89 |
Job Description: {job_desc}
|
90 |
-
|
91 |
-
Provide:
|
92 |
1. Candidate Name
|
93 |
2. Email Address
|
94 |
3. Contact Number
|
95 |
4. Relevant Skills
|
96 |
5. Educational Background
|
97 |
-
6. Leadership Experience (years)
|
98 |
7. Management Experience (years)
|
99 |
-
8.
|
100 |
-
|
101 |
-
|
102 |
"""
|
103 |
response = genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt)
|
104 |
return response.text.strip()
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def extract_candidate_details(gemini_response):
|
107 |
name_pattern = r"Candidate Name\s*[:\-]?\s*(.*?)(?=\n|$)"
|
108 |
email_pattern = r"Email Address\s*[:\-]?\s*(.*?)(?=\n|$)"
|
@@ -118,6 +133,46 @@ def extract_candidate_details(gemini_response):
|
|
118 |
|
119 |
return name, email, contact
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def process_resume(resume, job_desc, progress_callback):
|
122 |
resume_text = extract_text_from_file(resume.name)
|
123 |
|
@@ -127,23 +182,20 @@ def process_resume(resume, job_desc, progress_callback):
|
|
127 |
"Candidate Name": "N/A",
|
128 |
"Email": "N/A",
|
129 |
"Contact": "N/A",
|
130 |
-
"Overall Match Percentage":
|
131 |
"Gemini Analysis": "Failed to extract text from resume."
|
132 |
}
|
133 |
|
134 |
try:
|
135 |
gemini_analysis = analyze_with_gemini(resume_text, job_desc)
|
|
|
|
|
|
|
136 |
name, email, contact = extract_candidate_details(gemini_analysis)
|
137 |
-
|
138 |
-
# Extract the match percentage directly from Gemini response
|
139 |
-
match_percentage_pattern = r"Overall Match Percentage\s*[:\-]?\s*(\d+)%"
|
140 |
-
match_percentage_match = re.search(match_percentage_pattern, gemini_analysis)
|
141 |
-
match_percentage = match_percentage_match.group(1) if match_percentage_match else "0"
|
142 |
-
|
143 |
except Exception as e:
|
144 |
gemini_analysis = f"Gemini analysis failed: {str(e)}"
|
145 |
name, email, contact = "N/A", "N/A", "N/A"
|
146 |
-
|
147 |
|
148 |
progress_callback(1) # Update progress for this resume
|
149 |
|
@@ -152,7 +204,7 @@ def process_resume(resume, job_desc, progress_callback):
|
|
152 |
"Candidate Name": name,
|
153 |
"Email": email,
|
154 |
"Contact": contact,
|
155 |
-
"Overall Match Percentage": f"{
|
156 |
"Gemini Analysis": gemini_analysis
|
157 |
}
|
158 |
|
@@ -174,6 +226,9 @@ def analyze_resumes(resumes, job_desc):
|
|
174 |
resume_count_message = f"{len(resumes)} resume(s) uploaded."
|
175 |
return pd.DataFrame(results), resume_count_message
|
176 |
|
|
|
|
|
|
|
177 |
# Gradio Interface with Submit Button and Progress Bar
|
178 |
iface = gr.Interface(
|
179 |
fn=analyze_resumes,
|
@@ -181,21 +236,12 @@ iface = gr.Interface(
|
|
181 |
gr.File(label="Upload Resumes (PDF, DOCX, TXT)", file_count="multiple"),
|
182 |
gr.Textbox(label="Job Description", lines=5)
|
183 |
],
|
184 |
-
outputs=[
|
185 |
-
|
186 |
-
|
187 |
-
],
|
188 |
-
live=True,
|
189 |
-
title="Resume Analyzer with Leadership and Management Focus",
|
190 |
-
description="Upload resumes and a job description to calculate match percentages based on leadership, management, and skills.",
|
191 |
-
allow_flagging="never",
|
192 |
-
theme="default"
|
193 |
)
|
194 |
|
195 |
-
# Add download option
|
196 |
-
def download_results(results_df):
|
197 |
-
return results_df.to_csv(index=False)
|
198 |
-
|
199 |
iface.add_component(gr.File(label="Download Results", file_output=download_results, visible=True))
|
200 |
|
201 |
-
iface.launch(
|
|
|
6 |
import docx
|
7 |
import re
|
8 |
import google.generativeai as genai
|
9 |
+
import time
|
10 |
import concurrent.futures
|
11 |
+
from fuzzywuzzy import fuzz
|
12 |
|
13 |
# Load pre-trained embedding model for basic analysis
|
14 |
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
|
|
84 |
return ""
|
85 |
|
86 |
def analyze_with_gemini(resume_text, job_desc):
|
|
|
87 |
prompt = f"""
|
88 |
+
Analyze the resume with respect to the job description.
|
89 |
Resume: {resume_text}
|
90 |
Job Description: {job_desc}
|
91 |
+
Extract:
|
|
|
92 |
1. Candidate Name
|
93 |
2. Email Address
|
94 |
3. Contact Number
|
95 |
4. Relevant Skills
|
96 |
5. Educational Background
|
97 |
+
6. Team Leadership Experience (years)
|
98 |
7. Management Experience (years)
|
99 |
+
8. Management Skills (e.g. strategic planning, team management, project management, etc.)
|
100 |
+
9. Match Percentage (leadership and management focus)
|
101 |
+
Provide a summary of qualifications in 5 bullet points.
|
102 |
"""
|
103 |
response = genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt)
|
104 |
return response.text.strip()
|
105 |
|
106 |
+
def extract_management_details(gemini_response):
|
107 |
+
leadership_exp_pattern = r"Team Leadership Experience \(years\):\s*(\d+)"
|
108 |
+
management_exp_pattern = r"Management Experience \(years\):\s*(\d+)"
|
109 |
+
management_skills_pattern = r"Management Skills\s*[:\-]?\s*(.*?)(?=\n|$)"
|
110 |
+
|
111 |
+
leadership_match = re.search(leadership_exp_pattern, gemini_response)
|
112 |
+
management_match = re.search(management_exp_pattern, gemini_response)
|
113 |
+
skills_match = re.search(management_skills_pattern, gemini_response)
|
114 |
+
|
115 |
+
leadership_years = int(leadership_match.group(1)) if leadership_match else 0
|
116 |
+
management_years = int(management_match.group(1)) if management_match else 0
|
117 |
+
skills = skills_match.group(1) if skills_match else ""
|
118 |
+
|
119 |
+
return leadership_years, management_years, skills
|
120 |
+
|
121 |
def extract_candidate_details(gemini_response):
|
122 |
name_pattern = r"Candidate Name\s*[:\-]?\s*(.*?)(?=\n|$)"
|
123 |
email_pattern = r"Email Address\s*[:\-]?\s*(.*?)(?=\n|$)"
|
|
|
133 |
|
134 |
return name, email, contact
|
135 |
|
136 |
+
def calculate_role_score(role_keywords):
|
137 |
+
seniority_score = 0
|
138 |
+
role_hierarchy = {
|
139 |
+
"CEO": 5,
|
140 |
+
"CIO": 5,
|
141 |
+
"Director": 4,
|
142 |
+
"VP": 4,
|
143 |
+
"Manager": 3,
|
144 |
+
"Team Lead": 2,
|
145 |
+
"Junior": 1
|
146 |
+
}
|
147 |
+
|
148 |
+
for keyword, score in role_hierarchy.items():
|
149 |
+
if fuzz.partial_ratio(keyword.lower(), role_keywords.lower()) > 80:
|
150 |
+
seniority_score = max(seniority_score, score)
|
151 |
+
|
152 |
+
return seniority_score
|
153 |
+
|
154 |
+
def calculate_advanced_match(leadership_years, management_years, skills, required_skills, role_keywords, max_leadership_exp=10, max_management_exp=10):
|
155 |
+
leadership_weight = 0.35
|
156 |
+
management_weight = 0.35
|
157 |
+
skills_weight = 0.2
|
158 |
+
role_weight = 0.1
|
159 |
+
|
160 |
+
leadership_score = min(leadership_years / max_leadership_exp, 1.0) * 100
|
161 |
+
management_score = min(management_years / max_management_exp, 1.0) * 100
|
162 |
+
|
163 |
+
role_score = calculate_role_score(role_keywords)
|
164 |
+
role_score = role_score * 100
|
165 |
+
|
166 |
+
skills_matched = sum(1 for skill in required_skills if fuzz.partial_ratio(skill.lower(), skills.lower()) > 80)
|
167 |
+
total_skills = len(required_skills)
|
168 |
+
skill_match_score = (skills_matched / total_skills) * 100
|
169 |
+
|
170 |
+
overall_match = (leadership_score * leadership_weight) + \
|
171 |
+
(management_score * management_weight) + \
|
172 |
+
(skill_match_score * skills_weight) + \
|
173 |
+
(role_score * role_weight)
|
174 |
+
return round(overall_match, 2)
|
175 |
+
|
176 |
def process_resume(resume, job_desc, progress_callback):
|
177 |
resume_text = extract_text_from_file(resume.name)
|
178 |
|
|
|
182 |
"Candidate Name": "N/A",
|
183 |
"Email": "N/A",
|
184 |
"Contact": "N/A",
|
185 |
+
"Overall Match Percentage": 0.0,
|
186 |
"Gemini Analysis": "Failed to extract text from resume."
|
187 |
}
|
188 |
|
189 |
try:
|
190 |
gemini_analysis = analyze_with_gemini(resume_text, job_desc)
|
191 |
+
leadership_years, management_years, skills = extract_management_details(gemini_analysis)
|
192 |
+
role_keywords = gemini_analysis.lower()
|
193 |
+
overall_match = calculate_advanced_match(leadership_years, management_years, skills, required_skills, role_keywords)
|
194 |
name, email, contact = extract_candidate_details(gemini_analysis)
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
except Exception as e:
|
196 |
gemini_analysis = f"Gemini analysis failed: {str(e)}"
|
197 |
name, email, contact = "N/A", "N/A", "N/A"
|
198 |
+
overall_match = 0.0
|
199 |
|
200 |
progress_callback(1) # Update progress for this resume
|
201 |
|
|
|
204 |
"Candidate Name": name,
|
205 |
"Email": email,
|
206 |
"Contact": contact,
|
207 |
+
"Overall Match Percentage": f"{overall_match}%",
|
208 |
"Gemini Analysis": gemini_analysis
|
209 |
}
|
210 |
|
|
|
226 |
resume_count_message = f"{len(resumes)} resume(s) uploaded."
|
227 |
return pd.DataFrame(results), resume_count_message
|
228 |
|
229 |
+
def download_results(results):
|
230 |
+
return results.to_csv(index=False)
|
231 |
+
|
232 |
# Gradio Interface with Submit Button and Progress Bar
|
233 |
iface = gr.Interface(
|
234 |
fn=analyze_resumes,
|
|
|
236 |
gr.File(label="Upload Resumes (PDF, DOCX, TXT)", file_count="multiple"),
|
237 |
gr.Textbox(label="Job Description", lines=5)
|
238 |
],
|
239 |
+
outputs=[gr.Dataframe(), gr.Textbox()],
|
240 |
+
live=False, # Disable auto-running during input
|
241 |
+
allow_flagging="never"
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
)
|
243 |
|
244 |
+
# Add the file download option to the interface
|
|
|
|
|
|
|
245 |
iface.add_component(gr.File(label="Download Results", file_output=download_results, visible=True))
|
246 |
|
247 |
+
iface.launch()
|