Update app.py
Browse files
app.py
CHANGED
@@ -6,238 +6,309 @@ from PyPDF2 import PdfReader
|
|
6 |
import docx
|
7 |
import re
|
8 |
import google.generativeai as genai
|
9 |
-
import time
|
10 |
import concurrent.futures
|
11 |
from fuzzywuzzy import fuzz
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"strategic planning",
|
28 |
-
"team management",
|
29 |
-
"project management",
|
30 |
-
"decision making",
|
31 |
-
"communication",
|
32 |
-
"leadership",
|
33 |
-
"conflict resolution",
|
34 |
-
"delegation",
|
35 |
-
"performance management",
|
36 |
-
"budget management",
|
37 |
-
"resource allocation",
|
38 |
-
"staff development",
|
39 |
-
"change management",
|
40 |
-
"risk management",
|
41 |
-
"problem solving",
|
42 |
-
"negotiation",
|
43 |
-
"executive leadership",
|
44 |
-
"organizational skills",
|
45 |
-
"business development",
|
46 |
-
"stakeholder management",
|
47 |
-
"collaboration",
|
48 |
-
"emotional intelligence",
|
49 |
-
"coaching",
|
50 |
-
"mentoring",
|
51 |
-
"time management",
|
52 |
-
"cross-functional team leadership",
|
53 |
-
"innovation",
|
54 |
-
"organizational culture",
|
55 |
-
"team motivation",
|
56 |
-
"employee engagement",
|
57 |
-
"organizational design",
|
58 |
-
"continuous improvement",
|
59 |
-
"decision-making under pressure",
|
60 |
-
"adaptability",
|
61 |
-
"accountability",
|
62 |
-
"team building",
|
63 |
-
"succession planning",
|
64 |
-
"strategic partnerships",
|
65 |
-
"executive presence",
|
66 |
-
"influencing",
|
67 |
-
"visionary leadership"
|
68 |
-
]
|
69 |
-
|
70 |
-
# Helper Functions
|
71 |
-
|
72 |
-
def extract_text_from_file(file_path):
|
73 |
-
ext = os.path.splitext(file_path)[1].lower()
|
74 |
-
if ext == ".txt":
|
75 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
76 |
-
return f.read()
|
77 |
-
elif ext == ".pdf":
|
78 |
-
reader = PdfReader(file_path)
|
79 |
-
return "".join(page.extract_text() for page in reader.pages)
|
80 |
-
elif ext == ".docx":
|
81 |
-
doc = docx.Document(file_path)
|
82 |
-
return " ".join(para.text for para in doc.paragraphs)
|
83 |
-
else:
|
84 |
-
return ""
|
85 |
-
|
86 |
-
def analyze_with_gemini(resume_text, job_desc):
|
87 |
-
prompt = f"""
|
88 |
-
Analyze the resume with respect to the job description.
|
89 |
-
Resume: {resume_text}
|
90 |
-
Job Description: {job_desc}
|
91 |
-
Extract:
|
92 |
-
1. Candidate Name
|
93 |
-
2. Email Address
|
94 |
-
3. Contact Number
|
95 |
-
4. Relevant Skills
|
96 |
-
5. Educational Background
|
97 |
-
6. Team Leadership Experience (years)
|
98 |
-
7. Management Experience (years)
|
99 |
-
8. Management Skills (e.g. strategic planning, team management, project management, etc.)
|
100 |
-
9. Match Percentage (leadership and management focus)
|
101 |
-
Provide a summary of qualifications in 5 bullet points.
|
102 |
-
"""
|
103 |
-
response = genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt)
|
104 |
-
return response.text.strip()
|
105 |
-
|
106 |
-
def extract_management_details(gemini_response):
|
107 |
-
leadership_exp_pattern = r"Team Leadership Experience \(years\):\s*(\d+)"
|
108 |
-
management_exp_pattern = r"Management Experience \(years\):\s*(\d+)"
|
109 |
-
management_skills_pattern = r"Management Skills\s*[:\-]?\s*(.*?)(?=\n|$)"
|
110 |
-
|
111 |
-
leadership_match = re.search(leadership_exp_pattern, gemini_response)
|
112 |
-
management_match = re.search(management_exp_pattern, gemini_response)
|
113 |
-
skills_match = re.search(management_skills_pattern, gemini_response)
|
114 |
-
|
115 |
-
leadership_years = int(leadership_match.group(1)) if leadership_match else 0
|
116 |
-
management_years = int(management_match.group(1)) if management_match else 0
|
117 |
-
skills = skills_match.group(1) if skills_match else ""
|
118 |
-
|
119 |
-
return leadership_years, management_years, skills
|
120 |
-
|
121 |
-
def extract_candidate_details(gemini_response):
|
122 |
-
name_pattern = r"Candidate Name\s*[:\-]?\s*(.*?)(?=\n|$)"
|
123 |
-
email_pattern = r"Email Address\s*[:\-]?\s*(.*?)(?=\n|$)"
|
124 |
-
contact_pattern = r"Contact Number\s*[:\-]?\s*(.*?)(?=\n|$)"
|
125 |
-
|
126 |
-
name_match = re.search(name_pattern, gemini_response)
|
127 |
-
email_match = re.search(email_pattern, gemini_response)
|
128 |
-
contact_match = re.search(contact_pattern, gemini_response)
|
129 |
-
|
130 |
-
name = name_match.group(1) if name_match else "N/A"
|
131 |
-
email = email_match.group(1) if email_match else "N/A"
|
132 |
-
contact = contact_match.group(1) if contact_match else "N/A"
|
133 |
-
|
134 |
-
return name, email, contact
|
135 |
-
|
136 |
-
def calculate_role_score(role_keywords):
|
137 |
-
seniority_score = 0
|
138 |
-
role_hierarchy = {
|
139 |
-
"CEO": 5,
|
140 |
-
"CIO": 5,
|
141 |
-
"Director": 4,
|
142 |
-
"VP": 4,
|
143 |
-
"Manager": 3,
|
144 |
-
"Team Lead": 2,
|
145 |
-
"Junior": 1
|
146 |
-
}
|
147 |
-
|
148 |
-
for keyword, score in role_hierarchy.items():
|
149 |
-
if fuzz.partial_ratio(keyword.lower(), role_keywords.lower()) > 80:
|
150 |
-
seniority_score = max(seniority_score, score)
|
151 |
-
|
152 |
-
return seniority_score
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
159 |
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
return {
|
181 |
-
"Resume":
|
182 |
"Candidate Name": "N/A",
|
183 |
"Email": "N/A",
|
184 |
"Contact": "N/A",
|
185 |
-
"Overall Match Percentage": 0.0,
|
186 |
-
"Gemini Analysis": "
|
187 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
"
|
205 |
-
"
|
206 |
-
|
207 |
-
|
208 |
-
"
|
209 |
-
|
210 |
-
|
211 |
-
def analyze_resumes(resumes, job_desc):
|
212 |
-
progress = gr.Progress()
|
213 |
-
results = []
|
214 |
-
|
215 |
-
if len(resumes) > MAX_RESUMES:
|
216 |
-
return "Error: Cannot upload more than 10 resumes."
|
217 |
|
218 |
-
|
219 |
-
futures = []
|
220 |
-
for resume in resumes:
|
221 |
-
futures.append(executor.submit(process_resume, resume, job_desc, progress.update))
|
222 |
-
|
223 |
-
for future in concurrent.futures.as_completed(futures):
|
224 |
-
results.append(future.result())
|
225 |
-
|
226 |
-
return pd.DataFrame(results)
|
227 |
-
|
228 |
-
def download_results():
|
229 |
-
# You need to return a file path, here we use a CSV output
|
230 |
-
results_df = pd.DataFrame(results) # Assume results are available globally or passed in another way
|
231 |
-
results_df.to_csv("/tmp/analysis_results.csv", index=False)
|
232 |
-
return "/tmp/analysis_results.csv"
|
233 |
-
|
234 |
-
# Define Gradio Interface
|
235 |
-
iface = gr.Interface(
|
236 |
-
fn=analyze_resumes,
|
237 |
-
inputs=[gr.File(label="Upload Resumes", file_count="multiple"), gr.Textbox(label="Enter Job Description")],
|
238 |
-
outputs=[gr.DataFrame(label="Analysis Results"), gr.Textbox(label="Resume Count Message"), gr.File(label="Download Results", file=download_results)],
|
239 |
-
flagging_mode="never",
|
240 |
-
live=True
|
241 |
-
)
|
242 |
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import docx
|
7 |
import re
|
8 |
import google.generativeai as genai
|
|
|
9 |
import concurrent.futures
|
10 |
from fuzzywuzzy import fuzz
|
11 |
+
from typing import List, Dict, Tuple, Any
|
12 |
+
from dataclasses import dataclass
|
13 |
+
import logging
|
14 |
+
from pathlib import Path
|
15 |
|
16 |
+
# Configure logging
|
17 |
+
logging.basicConfig(
|
18 |
+
level=logging.INFO,
|
19 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
20 |
+
)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class Config:
|
25 |
+
MAX_RESUMES: int = 10
|
26 |
+
MAX_LEADERSHIP_EXP: int = 10
|
27 |
+
MAX_MANAGEMENT_EXP: int = 10
|
28 |
+
MODEL_NAME: str = 'paraphrase-MiniLM-L6-v2'
|
29 |
+
GEMINI_MODEL: str = 'gemini-1.5-flash'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
class ResumeAnalyzer:
|
32 |
+
def __init__(self):
|
33 |
+
self.config = Config()
|
34 |
+
self._initialize_models()
|
35 |
+
self.required_skills = self._load_required_skills()
|
36 |
+
self.role_hierarchy = self._load_role_hierarchy()
|
37 |
|
38 |
+
def _initialize_models(self) -> None:
|
39 |
+
"""Initialize the required models and API configurations."""
|
40 |
+
try:
|
41 |
+
self.sentence_model = SentenceTransformer(self.config.MODEL_NAME)
|
42 |
+
|
43 |
+
api_key = os.getenv('GOOGLE_API_KEY')
|
44 |
+
if not api_key:
|
45 |
+
raise ValueError("Google API key not found. Please set GOOGLE_API_KEY.")
|
46 |
+
genai.configure(api_key=api_key)
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
logger.error(f"Failed to initialize models: {str(e)}")
|
50 |
+
raise
|
51 |
|
52 |
+
@staticmethod
|
53 |
+
def _load_required_skills() -> List[str]:
|
54 |
+
"""Load the list of required leadership and management skills."""
|
55 |
+
return [
|
56 |
+
"strategic planning", "team management", "project management",
|
57 |
+
"decision making", "communication", "leadership",
|
58 |
+
"conflict resolution", "delegation", "performance management",
|
59 |
+
"budget management", "resource allocation", "staff development",
|
60 |
+
"change management", "risk management", "problem solving",
|
61 |
+
"negotiation", "executive leadership", "organizational skills",
|
62 |
+
"business development", "stakeholder management", "collaboration",
|
63 |
+
"emotional intelligence", "coaching", "mentoring",
|
64 |
+
"time management", "cross-functional team leadership", "innovation",
|
65 |
+
"organizational culture", "team motivation", "employee engagement",
|
66 |
+
"organizational design", "continuous improvement",
|
67 |
+
"decision-making under pressure", "adaptability", "accountability",
|
68 |
+
"team building", "succession planning", "strategic partnerships",
|
69 |
+
"executive presence", "influencing", "visionary leadership"
|
70 |
+
]
|
71 |
|
72 |
+
@staticmethod
|
73 |
+
def _load_role_hierarchy() -> Dict[str, int]:
|
74 |
+
"""Load the role hierarchy for scoring."""
|
75 |
+
return {
|
76 |
+
"CEO": 5, "CIO": 5, "CFO": 5, "COO": 5,
|
77 |
+
"Director": 4, "VP": 4, "Head": 4,
|
78 |
+
"Manager": 3, "Senior": 3,
|
79 |
+
"Team Lead": 2, "Lead": 2,
|
80 |
+
"Junior": 1, "Associate": 1
|
81 |
+
}
|
82 |
|
83 |
+
def extract_text_from_file(self, file_path: str) -> str:
|
84 |
+
"""Extract text content from various file formats."""
|
85 |
+
try:
|
86 |
+
file_path = Path(file_path)
|
87 |
+
if not file_path.exists():
|
88 |
+
raise FileNotFoundError(f"File not found: {file_path}")
|
89 |
|
90 |
+
ext = file_path.suffix.lower()
|
91 |
+
if ext == ".txt":
|
92 |
+
return file_path.read_text(encoding='utf-8')
|
93 |
+
elif ext == ".pdf":
|
94 |
+
with open(file_path, 'rb') as file:
|
95 |
+
reader = PdfReader(file)
|
96 |
+
return " ".join(page.extract_text() for page in reader.pages)
|
97 |
+
elif ext == ".docx":
|
98 |
+
doc = docx.Document(file_path)
|
99 |
+
return " ".join(para.text for para in doc.paragraphs)
|
100 |
+
else:
|
101 |
+
raise ValueError(f"Unsupported file format: {ext}")
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(f"Error extracting text from {file_path}: {str(e)}")
|
104 |
+
return ""
|
105 |
+
|
106 |
+
def analyze_with_gemini(self, resume_text: str, job_desc: str) -> str:
|
107 |
+
"""Analyze resume using Gemini model."""
|
108 |
+
try:
|
109 |
+
prompt = f"""
|
110 |
+
Analyze the resume with respect to the job description.
|
111 |
+
Resume: {resume_text}
|
112 |
+
Job Description: {job_desc}
|
113 |
+
|
114 |
+
Please provide a structured analysis with the following information:
|
115 |
+
1. Candidate Name:
|
116 |
+
2. Email Address:
|
117 |
+
3. Contact Number:
|
118 |
+
4. Relevant Skills:
|
119 |
+
5. Educational Background:
|
120 |
+
6. Team Leadership Experience (years):
|
121 |
+
7. Management Experience (years):
|
122 |
+
8. Management Skills:
|
123 |
+
9. Match Percentage:
|
124 |
+
|
125 |
+
Summary of Qualifications:
|
126 |
+
•
|
127 |
+
•
|
128 |
+
•
|
129 |
+
•
|
130 |
+
•
|
131 |
+
"""
|
132 |
+
|
133 |
+
model = genai.GenerativeModel(self.config.GEMINI_MODEL)
|
134 |
+
response = model.generate_content(prompt)
|
135 |
+
return response.text.strip()
|
136 |
+
except Exception as e:
|
137 |
+
logger.error(f"Gemini analysis failed: {str(e)}")
|
138 |
+
raise
|
139 |
+
|
140 |
+
def extract_management_details(self, gemini_response: str) -> Tuple[int, int, str]:
|
141 |
+
"""Extract management experience details from Gemini response."""
|
142 |
+
try:
|
143 |
+
patterns = {
|
144 |
+
'leadership': r"Team Leadership Experience \(years\):\s*(\d+)",
|
145 |
+
'management': r"Management Experience \(years\):\s*(\d+)",
|
146 |
+
'skills': r"Management Skills\s*[:\-]?\s*(.*?)(?=\n|$)"
|
147 |
+
}
|
148 |
+
|
149 |
+
matches = {
|
150 |
+
key: re.search(pattern, gemini_response)
|
151 |
+
for key, pattern in patterns.items()
|
152 |
+
}
|
153 |
+
|
154 |
+
leadership_years = int(matches['leadership'].group(1)) if matches['leadership'] else 0
|
155 |
+
management_years = int(matches['management'].group(1)) if matches['management'] else 0
|
156 |
+
skills = matches['skills'].group(1) if matches['skills'] else ""
|
157 |
+
|
158 |
+
return leadership_years, management_years, skills
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(f"Error extracting management details: {str(e)}")
|
161 |
+
return 0, 0, ""
|
162 |
+
|
163 |
+
def calculate_role_score(self, role_keywords: str) -> float:
|
164 |
+
"""Calculate seniority score based on role keywords."""
|
165 |
+
try:
|
166 |
+
seniority_score = 0
|
167 |
+
for keyword, score in self.role_hierarchy.items():
|
168 |
+
if fuzz.partial_ratio(keyword.lower(), role_keywords.lower()) > 80:
|
169 |
+
seniority_score = max(seniority_score, score)
|
170 |
+
return seniority_score
|
171 |
+
except Exception as e:
|
172 |
+
logger.error(f"Error calculating role score: {str(e)}")
|
173 |
+
return 0
|
174 |
+
|
175 |
+
def calculate_advanced_match(self, leadership_years: int, management_years: int,
|
176 |
+
skills: str, role_keywords: str) -> float:
|
177 |
+
"""Calculate overall match percentage using weighted criteria."""
|
178 |
+
try:
|
179 |
+
weights = {
|
180 |
+
'leadership': 0.35,
|
181 |
+
'management': 0.35,
|
182 |
+
'skills': 0.20,
|
183 |
+
'role': 0.10
|
184 |
+
}
|
185 |
+
|
186 |
+
leadership_score = min(leadership_years / self.config.MAX_LEADERSHIP_EXP, 1.0) * 100
|
187 |
+
management_score = min(management_years / self.config.MAX_MANAGEMENT_EXP, 1.0) * 100
|
188 |
+
|
189 |
+
role_score = self.calculate_role_score(role_keywords) * 20 # Scale to 100
|
190 |
+
|
191 |
+
skills_matched = sum(1 for skill in self.required_skills
|
192 |
+
if fuzz.partial_ratio(skill.lower(), skills.lower()) > 80)
|
193 |
+
skill_match_score = (skills_matched / len(self.required_skills)) * 100
|
194 |
+
|
195 |
+
overall_match = sum([
|
196 |
+
leadership_score * weights['leadership'],
|
197 |
+
management_score * weights['management'],
|
198 |
+
skill_match_score * weights['skills'],
|
199 |
+
role_score * weights['role']
|
200 |
+
])
|
201 |
+
|
202 |
+
return round(overall_match, 2)
|
203 |
+
except Exception as e:
|
204 |
+
logger.error(f"Error calculating advanced match: {str(e)}")
|
205 |
+
return 0.0
|
206 |
+
|
207 |
+
def process_resume(self, resume: Any, job_desc: str,
|
208 |
+
progress_callback: callable) -> Dict[str, Any]:
|
209 |
+
"""Process a single resume and return analysis results."""
|
210 |
+
try:
|
211 |
+
resume_text = self.extract_text_from_file(resume.name)
|
212 |
+
if not resume_text.strip():
|
213 |
+
return self._create_error_result(resume.name, "Failed to extract text from resume")
|
214 |
+
|
215 |
+
gemini_analysis = self.analyze_with_gemini(resume_text, job_desc)
|
216 |
+
leadership_years, management_years, skills = self.extract_management_details(gemini_analysis)
|
217 |
+
overall_match = self.calculate_advanced_match(
|
218 |
+
leadership_years, management_years, skills, gemini_analysis.lower()
|
219 |
+
)
|
220 |
+
|
221 |
+
result = {
|
222 |
+
"Resume": resume.name,
|
223 |
+
"Candidate Name": self._extract_field(gemini_analysis, "Candidate Name"),
|
224 |
+
"Email": self._extract_field(gemini_analysis, "Email Address"),
|
225 |
+
"Contact": self._extract_field(gemini_analysis, "Contact Number"),
|
226 |
+
"Overall Match Percentage": f"{overall_match}%",
|
227 |
+
"Gemini Analysis": gemini_analysis
|
228 |
+
}
|
229 |
+
|
230 |
+
if progress_callback:
|
231 |
+
progress_callback(1)
|
232 |
+
|
233 |
+
return result
|
234 |
+
except Exception as e:
|
235 |
+
logger.error(f"Error processing resume {resume.name}: {str(e)}")
|
236 |
+
return self._create_error_result(resume.name, str(e))
|
237 |
+
|
238 |
+
@staticmethod
|
239 |
+
def _extract_field(text: str, field: str) -> str:
|
240 |
+
"""Extract a specific field from the analysis text."""
|
241 |
+
pattern = f"{field}\\s*[:\\-]?\\s*(.*?)(?=\\n|$)"
|
242 |
+
match = re.search(pattern, text)
|
243 |
+
return match.group(1) if match else "N/A"
|
244 |
+
|
245 |
+
@staticmethod
|
246 |
+
def _create_error_result(resume_name: str, error_message: str) -> Dict[str, str]:
|
247 |
+
"""Create a standardized error result."""
|
248 |
return {
|
249 |
+
"Resume": resume_name,
|
250 |
"Candidate Name": "N/A",
|
251 |
"Email": "N/A",
|
252 |
"Contact": "N/A",
|
253 |
+
"Overall Match Percentage": "0.0%",
|
254 |
+
"Gemini Analysis": f"Analysis failed: {error_message}"
|
255 |
}
|
256 |
+
|
257 |
+
def analyze_resumes(self, resumes: List[Any], job_desc: str) -> pd.DataFrame:
|
258 |
+
"""Analyze multiple resumes in parallel."""
|
259 |
+
if len(resumes) > self.config.MAX_RESUMES:
|
260 |
+
return pd.DataFrame([{
|
261 |
+
"Error": f"Cannot process more than {self.config.MAX_RESUMES} resumes at once."
|
262 |
+
}])
|
263 |
+
|
264 |
+
progress = gr.Progress()
|
265 |
+
|
266 |
+
try:
|
267 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
268 |
+
futures = [
|
269 |
+
executor.submit(self.process_resume, resume, job_desc, progress.update)
|
270 |
+
for resume in resumes
|
271 |
+
]
|
272 |
+
results = [future.result() for future in concurrent.futures.as_completed(futures)]
|
273 |
+
|
274 |
+
return pd.DataFrame(results)
|
275 |
+
except Exception as e:
|
276 |
+
logger.error(f"Error in batch resume analysis: {str(e)}")
|
277 |
+
return pd.DataFrame([{"Error": f"Analysis failed: {str(e)}"}])
|
278 |
+
|
279 |
+
# Create Gradio interface
|
280 |
+
def create_interface():
|
281 |
+
analyzer = ResumeAnalyzer()
|
282 |
|
283 |
+
iface = gr.Interface(
|
284 |
+
fn=analyzer.analyze_resumes,
|
285 |
+
inputs=[
|
286 |
+
gr.File(
|
287 |
+
label="Upload Resumes (max 10)",
|
288 |
+
file_count="multiple"
|
289 |
+
),
|
290 |
+
gr.Textbox(
|
291 |
+
label="Enter Job Description",
|
292 |
+
placeholder="Paste the job description here..."
|
293 |
+
)
|
294 |
+
],
|
295 |
+
outputs=[
|
296 |
+
gr.DataFrame(label="Analysis Results")
|
297 |
+
],
|
298 |
+
title="Resume Analysis Tool",
|
299 |
+
description="Upload resumes and a job description to analyze candidates' leadership and management potential.",
|
300 |
+
examples=[],
|
301 |
+
cache_examples=False,
|
302 |
+
theme="default"
|
303 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
return iface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
if __name__ == "__main__":
|
308 |
+
iface = create_interface()
|
309 |
+
iface.launch(
|
310 |
+
share=False,
|
311 |
+
debug=True,
|
312 |
+
server_name="0.0.0.0",
|
313 |
+
server_port=7860
|
314 |
+
)
|