Update app.py
Browse files
app.py
CHANGED
@@ -1,127 +1,134 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
import os
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
else:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
return
|
36 |
-
|
37 |
-
def
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
continue
|
69 |
-
|
70 |
-
# Get embeddings for the resume using Gemini 1.5 Flash
|
71 |
-
resume_emb = get_gemini_embeddings(resume_text)
|
72 |
-
|
73 |
-
if not resume_emb:
|
74 |
-
results.append([resume_file.name, 0, "Not Eligible", None, "No leadership experience", "No Email", "No Contact"])
|
75 |
continue
|
76 |
-
|
77 |
-
# Calculate similarity
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
contact_info.get('contact', 'No Contact')
|
104 |
-
])
|
105 |
-
|
106 |
-
# Save results to CSV and return them
|
107 |
-
csv_file_path = save_results_to_csv(results)
|
108 |
-
return results, csv_file_path
|
109 |
-
|
110 |
-
# Gradio UI
|
111 |
-
with gr.Blocks() as demo:
|
112 |
-
with gr.Row():
|
113 |
-
job_desc_input = gr.Textbox(label="Job Description", lines=3)
|
114 |
-
resume_input = gr.Files(label="Upload Resumes", file_count="multiple", file_types=[".pdf", ".txt"])
|
115 |
-
|
116 |
-
results_output = gr.Dataframe(headers=["Resume Name", "Similarity Score (%)", "Eligibility", "Name", "Leadership Experience", "Email", "Contact"])
|
117 |
-
|
118 |
-
check_button = gr.Button("Check Similarity")
|
119 |
-
|
120 |
-
# Set up button's action
|
121 |
-
check_button.click(
|
122 |
-
check_similarity,
|
123 |
-
inputs=[job_desc_input, resume_input],
|
124 |
-
outputs=[results_output, gr.File(label="Download CSV")]
|
125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
import os
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
import docx
|
6 |
+
import re
|
7 |
+
import google.generativeai as genai
|
8 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
9 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
+
|
11 |
+
# Load pre-trained embedding model for basic analysis
|
12 |
+
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
13 |
+
|
14 |
+
# Configure Google API for Gemini 1.5 Flash
|
15 |
+
api_key = os.getenv('GOOGLE_API_KEY')
|
16 |
+
if not api_key:
|
17 |
+
raise ValueError("Google API key not found. Please set GOOGLE_API_KEY.")
|
18 |
+
genai.configure(api_key=api_key)
|
19 |
+
|
20 |
+
# Maximum resumes to process
|
21 |
+
MAX_RESUMES = 10
|
22 |
+
|
23 |
+
# Helper Functions
|
24 |
+
def extract_text_from_file(file_path):
|
25 |
+
ext = os.path.splitext(file_path)[1].lower()
|
26 |
+
if ext == ".txt":
|
27 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
28 |
+
return f.read()
|
29 |
+
elif ext == ".pdf":
|
30 |
+
reader = PdfReader(file_path)
|
31 |
+
return "".join(page.extract_text() for page in reader.pages)
|
32 |
+
elif ext == ".docx":
|
33 |
+
doc = docx.Document(file_path)
|
34 |
+
return " ".join(para.text for para in doc.paragraphs)
|
35 |
else:
|
36 |
+
return ""
|
37 |
+
|
38 |
+
def calculate_similarity(resume_text, job_desc):
|
39 |
+
resume_emb = sentence_model.encode(resume_text, convert_to_tensor=True)
|
40 |
+
job_emb = sentence_model.encode(job_desc, convert_to_tensor=True)
|
41 |
+
similarity = util.pytorch_cos_sim(resume_emb, job_emb)[0][0].item()
|
42 |
+
return round(similarity * 100, 2)
|
43 |
+
|
44 |
+
def calculate_match_percentage(resume_text, job_desc):
|
45 |
+
docs = [resume_text, job_desc]
|
46 |
+
vectorizer = TfidfVectorizer(stop_words="english")
|
47 |
+
tfidf_matrix = vectorizer.fit_transform(docs)
|
48 |
+
cosine_sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
|
49 |
+
return round(cosine_sim[0][0] * 100, 2)
|
50 |
+
|
51 |
+
def analyze_with_gemini(resume_text, job_desc):
|
52 |
+
prompt = f"""
|
53 |
+
Analyze the resume with respect to the job description.
|
54 |
+
Resume: {resume_text}
|
55 |
+
Job Description: {job_desc}
|
56 |
+
Extract:
|
57 |
+
1. Candidate Name
|
58 |
+
2. Relevant Skills
|
59 |
+
3. Educational Background
|
60 |
+
4. Team Leadership Experience (years)
|
61 |
+
5. Management Experience (years)
|
62 |
+
6. Match Percentage
|
63 |
+
Provide a summary of qualifications in 5 bullet points.
|
64 |
+
"""
|
65 |
+
response = genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt)
|
66 |
+
return response.text.strip()
|
67 |
+
|
68 |
+
def process_resumes(job_desc_file, resumes):
|
69 |
+
if not job_desc_file or not resumes:
|
70 |
+
return "Please upload a job description and resumes for analysis."
|
71 |
+
|
72 |
+
if len(resumes) > MAX_RESUMES:
|
73 |
+
return f"Please upload no more than {MAX_RESUMES} resumes."
|
74 |
+
|
75 |
+
# Load job description text
|
76 |
+
job_desc = extract_text_from_file(job_desc_file)
|
77 |
|
78 |
+
results = []
|
79 |
+
for resume in resumes:
|
80 |
+
resume_text = extract_text_from_file(resume.name)
|
81 |
+
|
82 |
+
if not resume_text.strip():
|
83 |
+
results.append({
|
84 |
+
"Resume": resume.name,
|
85 |
+
"Similarity (Embed)": 0.0,
|
86 |
+
"Match Percentage (TF-IDF)": 0.0,
|
87 |
+
"Gemini Analysis": "Failed to extract text from resume."
|
88 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
continue
|
90 |
+
|
91 |
+
# Calculate similarity using embeddings
|
92 |
+
embed_similarity = calculate_similarity(resume_text, job_desc)
|
93 |
+
|
94 |
+
# Calculate match percentage using TF-IDF
|
95 |
+
tfidf_match = calculate_match_percentage(resume_text, job_desc)
|
96 |
+
|
97 |
+
# Detailed analysis with Gemini API
|
98 |
+
try:
|
99 |
+
gemini_analysis = analyze_with_gemini(resume_text, job_desc)
|
100 |
+
except Exception as e:
|
101 |
+
gemini_analysis = f"Gemini analysis failed: {str(e)}"
|
102 |
+
|
103 |
+
results.append({
|
104 |
+
"Resume": resume.name,
|
105 |
+
"Similarity (Embed)": embed_similarity,
|
106 |
+
"Match Percentage (TF-IDF)": tfidf_match,
|
107 |
+
"Gemini Analysis": gemini_analysis
|
108 |
+
})
|
109 |
+
|
110 |
+
# Format results for display
|
111 |
+
output = "\n\n".join(
|
112 |
+
f"**{res['Resume']}**\n"
|
113 |
+
f"Similarity (Embed): {res['Similarity (Embed)']}%\n"
|
114 |
+
f"Match Percentage (TF-IDF): {res['Match Percentage (TF-IDF)']}%\n"
|
115 |
+
f"Gemini Analysis:\n{res['Gemini Analysis']}\n"
|
116 |
+
for res in results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
)
|
118 |
+
return output
|
119 |
+
|
120 |
+
# Gradio Interface
|
121 |
+
job_desc_input = gr.File(label="Upload Job Description (TXT, PDF, DOCX)", type="filepath")
|
122 |
+
resumes_input = gr.Files(label="Upload Resumes (TXT, PDF, DOCX)", type="file")
|
123 |
+
|
124 |
+
results_output = gr.Textbox(label="Analysis Results", lines=30)
|
125 |
+
|
126 |
+
interface = gr.Interface(
|
127 |
+
fn=process_resumes,
|
128 |
+
inputs=[job_desc_input, resumes_input],
|
129 |
+
outputs=[results_output],
|
130 |
+
title="Resume Analysis with Gemini API",
|
131 |
+
description="Upload a job description and resumes to evaluate candidates' match."
|
132 |
+
)
|
133 |
|
134 |
+
interface.launch()
|