File size: 10,146 Bytes
26fdc21
3878720
 
26fdc21
 
e928b32
a51874e
8edaedd
e928b32
 
8edaedd
26fdc21
e928b32
26fdc21
 
 
b55dfb3
e928b32
b55dfb3
 
e928b32
 
 
94d82cf
8edaedd
 
d5951d6
8edaedd
 
 
e928b32
07b8ea9
3ca5c7e
07b8ea9
 
 
 
34bbdcd
 
e928b32
 
 
 
 
 
 
 
94d82cf
e928b32
94d82cf
e928b32
 
26fdc21
e928b32
 
 
 
 
 
 
 
 
 
 
 
 
3ca5c7e
e928b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca5c7e
e928b32
 
 
 
 
 
 
 
 
3ca5c7e
e928b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792f38c
3ca5c7e
e928b32
 
 
3ca5c7e
792f38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5951d6
8edaedd
 
 
 
 
 
696a781
8edaedd
 
 
 
696a781
 
8edaedd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e928b32
 
 
26fdc21
e928b32
 
 
 
 
7d857a9
 
e928b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792f38c
 
 
e928b32
d5951d6
8edaedd
 
 
 
 
 
 
792f38c
e928b32
 
 
8edaedd
 
 
 
 
 
 
 
 
792f38c
8edaedd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import pandas as pd
import google.generativeai as genai
import PyPDF2 as pdf
import io
import re
import streamlit as st
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import torch

# Set API key for Google API (Make sure it's securely set in your environment variables)
api_key = os.getenv('GOOGLE_API_KEY')
if not api_key:
    raise ValueError("API key not found. Please set GOOGLE_API_KEY in your Hugging Face Space secrets.")

# Initialize the generative AI model
genai.configure(api_key=api_key)

# Load pre-trained models
skill_extractor = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
education_extractor = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", aggregation_strategy="simple")

# Define the task and model for Hugging Face
task = "sentiment-analysis"
model_name = "roberta-base"  # Using RoBERTa
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Extract text from uploaded PDF file
def input_pdf_text(uploaded_file):
    file_stream = io.BytesIO(uploaded_file.read())
    reader = pdf.PdfReader(file_stream)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

# Extract candidate name directly from the model response
def extract_name_from_model_response(response_text):
    match = re.search(r"Candidate Name:\s*(.*)", response_text)
    if match:
        return match.group(1)
    return "Not Available"

# Extract email and phone numbers using regex
def extract_contact_info(resume_text):
    email_match = re.search(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", resume_text)
    email = email_match.group(0) if email_match else "Not Available"

    contact_match = re.search(r"\+?\(?\d{1,3}\)?[-.\s]?\(?\d{1,4}\)?[-.\s]?\d{3}[-.\s]?\d{4}|\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}", resume_text)
    contact = contact_match.group(0) if contact_match else "Not Available"

    return email, contact

# Extract skills using NER model
def extract_skills(resume_text):
    ner_results = skill_extractor(resume_text)
    skills = [entity['word'] for entity in ner_results if entity['entity_group'] == 'SKILL']
    return ", ".join(skills) if skills else "Not Available"

# Extract education information using NER model
def extract_education(resume_text):
    ner_results = education_extractor(resume_text)
    education_entities = [entity['word'] for entity in ner_results if entity['entity_group'] == 'EDUCATION']
    
    if education_entities:
        return ", ".join(education_entities)
    else:
        edu_patterns = [
            r"(Bachelor of .+|Master of .+|PhD|BSc|MSc|MBA|B.A|M.A|B.Tech|M.Tech|Doctorate|Engineering|Computer Science|Information Technology|Data Science)",
            r"(University of [A-Za-z]+.*)"
        ]
        education = []
        for pattern in edu_patterns:
            matches = re.findall(pattern, resume_text)
            education.extend(matches)
        
        return ", ".join(education) if education else "Not Available"

# Extract team leadership and management years from the resume
def extract_experience_years(text):
    years = 0
    patterns = [
        r"(\d{4})\s?[-to]+\s?(\d{4})",  # From year to year
        r"(\d+) years",  # Exact mention of years
        r"since (\d{4})",  # Mentions "since"
        r"(\d+)\s?[\-–]\s?(\d+)",  # Handles year ranges with hyphens (e.g., 2015-2020)
        r"(\d+)\s?[\–]\s?present",  # Present with range (e.g., 2019–present)
    ]
    
    for pattern in patterns:
        matches = re.findall(pattern, text)
        for match in matches:
            if len(match) == 2:
                start_year = int(match[0])
                end_year = int(match[1])
                years += end_year - start_year
            elif len(match) == 1:
                years += int(match[0])

    return years

# Calculate the match percentage using TF-IDF and cosine similarity
def calculate_match_percentage(resume_text, job_description):
    documents = [resume_text, job_description]
    tfidf_vectorizer = TfidfVectorizer(stop_words='english')
    tfidf_matrix = tfidf_vectorizer.fit_transform(documents)
    cosine_sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
    match_percentage = cosine_sim[0][0] * 100
    return round(match_percentage, 2)

# Generate the detailed analysis from the Gemini model
def get_gemini_response(input_text, job_description):
    prompt = f"""
    Act as an Applicant Tracking System. Analyze the resume with respect to the job description.
    Candidate Details: {input_text}
    Job Description: {job_description}
    Please extract the following:
    1. Candidate Name
    2. Relevant Skills
    3. Educational Background
    4. Direct Team Leadership Experience (in years)
    5. Direct Management Experience (in years)
    6. Match percentage with the job description
    7. Provide a resume summary in 5 bullet points highlighting the candidate's qualifications.
    """
    model = genai.GenerativeModel('gemini-1.5-flash')
    response = model.generate_content(prompt)
    return response.text.strip()

# Extract a detailed resume summary (focusing on leadership roles and team management experience)
def extract_leadership_summary(response_text):
    leadership_summary = "Resume Summary: Leadership and Team Management Experience (in years)\n"
    lines = response_text.strip().split("\n")
    meaningful_lines = [line.strip() for line in lines if line.strip()]
    leadership_experience = []
    
    for line in meaningful_lines:
        if "leadership" in line.lower() or "management" in line.lower() or "team" in line.lower():
            leadership_experience.append(line)
    
    leadership_experience = leadership_experience[-5:] if len(leadership_experience) >= 5 else leadership_experience
    
    for idx, bullet in enumerate(leadership_experience, 1):
        leadership_summary += f"{idx}. {bullet}\n"
    
    return leadership_summary

# Analyze the resume using Hugging Face RoBERTa
def analyze_resume(resume_text):
    # Create input prompts for different aspects
    prompts = [
        f"This resume shows strong managerial responsibilities: {resume_text}",
        f"This resume demonstrates excellent leadership skills: {resume_text}",
        f"This resume indicates significant work experience: {resume_text}",
        f"This resume indicates at least 2 years of relevant experience: {resume_text}"
    ]

    results = []
    for prompt in prompts:
        # Tokenize the prompt with truncation
        inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
        outputs = model(**inputs)
        predicted_class = torch.argmax(outputs.logits).item()
        results.append(predicted_class)

    # Interpret the results
    analysis = {
        "managerial_responsibilities": results[0] == 1,  # Assuming 1 is positive sentiment
        "leadership_skills": results[1] == 1,
        "work_experience": results[2] == 1,
        "relevant_experience": results[3] == 1
    }

    # Check if all criteria are met
    is_suitable = all(analysis.values())

    return analysis, is_suitable

# Streamlit interface to upload files and provide job description
st.title("Resume ATS Analysis Tool")
st.markdown("### Upload Resume and Job Description for Analysis")

# File uploader for resume PDF
uploaded_file = st.file_uploader("Upload Resume PDF", type=["pdf"])

# Job description text input
job_description = st.text_area("Job Description", height=200)

if uploaded_file and job_description:
    analyze_button = st.button("Analyze")

    if analyze_button:
        resume_text = input_pdf_text(uploaded_file)
        response_text = get_gemini_response(resume_text, job_description)

        # Initialize an empty dictionary to hold the dynamic data
        data = {}

        # Extract candidate name
        name = extract_name_from_model_response(response_text)
        data['Candidate_Name'] = name if name != "Not Available" else "Not Available"

        # Extract contact info (email, phone)
        email, contact = extract_contact_info(resume_text)
        data['Email'] = email if email != "Not Available" else "Not Available"
        data['Contact'] = contact if contact != "Not Available" else "Not Available"

        # Calculate match percentage dynamically
        match_percentage = calculate_match_percentage(resume_text, job_description)
        data['Match_Percentage'] = match_percentage

        # Calculate Job Description Match Score dynamically (based on match percentage)
        if match_percentage >= 80:
            job_description_match_score = "High"
        elif match_percentage >= 60:
            job_description_match_score = "Medium"
        else:
            job_description_match_score = "Low"
        data['Job_Description_Match_Score'] = job_description_match_score

        # Extract leadership and team management summary
        leadership_summary = extract_leadership_summary(response_text)
        data['Leadership_and_Team_Management_Summary'] = leadership_summary

        # Analyze the resume using Hugging Face RoBERTa
        analysis, is_suitable = analyze_resume(resume_text)
        data['Managerial_Responsibilities'] = analysis['managerial_responsibilities']
        data['Leadership_Skills'] = analysis['leadership_skills']
        data['Work_Experience'] = analysis['work_experience']
        data['Relevant_Experience'] = analysis['relevant_experience']
        data['Suitable_for_Role'] = is_suitable

        # Display the results as a table
        df = pd.DataFrame([data])
        st.write(df)

        # Download the results as a CSV file
        csv = df.to_csv(index=False)
        st.download_button(
            label="Download Results as CSV",
            data=csv,
            file_name='resume_analysis_results.csv',
            mime='text/csv'
        )

else:
    st.write("Please upload a resume and provide a job description to analyze.")