Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import nltk
|
4 |
+
import numpy as np
|
5 |
+
import tflearn
|
6 |
+
import random
|
7 |
+
import json
|
8 |
+
import pickle
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.stem.lancaster import LancasterStemmer
|
11 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
+
import googlemaps
|
13 |
+
import folium
|
14 |
+
import torch
|
15 |
+
import pandas as pd
|
16 |
+
from sklearn.tree import DecisionTreeClassifier
|
17 |
+
from sklearn.ensemble import RandomForestClassifier
|
18 |
+
from sklearn.naive_bayes import GaussianNB
|
19 |
+
from sklearn.metrics import accuracy_score
|
20 |
+
from sklearn.preprocessing import LabelEncoder
|
21 |
+
|
22 |
+
# Suppress TensorFlow warnings
|
23 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # No GPU available, use CPU only
|
24 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # Suppress TensorFlow logging
|
25 |
+
|
26 |
+
# Download necessary NLTK resources
|
27 |
+
nltk.download("punkt")
|
28 |
+
stemmer = LancasterStemmer()
|
29 |
+
|
30 |
+
# Load intents and chatbot training data
|
31 |
+
with open("intents.json") as file:
|
32 |
+
intents_data = json.load(file)
|
33 |
+
|
34 |
+
with open("data.pickle", "rb") as f:
|
35 |
+
words, labels, training, output = pickle.load(f)
|
36 |
+
|
37 |
+
# Build the chatbot model
|
38 |
+
net = tflearn.input_data(shape=[None, len(training[0])])
|
39 |
+
net = tflearn.fully_connected(net, 8)
|
40 |
+
net = tflearn.fully_connected(net, 8)
|
41 |
+
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
42 |
+
net = tflearn.regression(net)
|
43 |
+
chatbot_model = tflearn.DNN(net)
|
44 |
+
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
45 |
+
|
46 |
+
# Hugging Face sentiment and emotion models
|
47 |
+
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
48 |
+
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
49 |
+
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
50 |
+
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
51 |
+
|
52 |
+
# Google Maps API Client
|
53 |
+
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
54 |
+
|
55 |
+
# Disease Prediction Code
|
56 |
+
def load_data():
|
57 |
+
try:
|
58 |
+
df = pd.read_csv("Training.csv")
|
59 |
+
tr = pd.read_csv("Testing.csv")
|
60 |
+
except FileNotFoundError:
|
61 |
+
raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
|
62 |
+
|
63 |
+
# Encode diseases
|
64 |
+
disease_dict = {
|
65 |
+
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
|
66 |
+
'Peptic ulcer diseae': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
|
67 |
+
'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
|
68 |
+
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19,
|
69 |
+
'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
|
70 |
+
'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemmorhoids(piles)': 28,
|
71 |
+
'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
|
72 |
+
'Hypoglycemia': 33, 'Osteoarthritist': 34, 'Arthritis': 35,
|
73 |
+
'(vertigo) Paroymsal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
|
74 |
+
'Psoriasis': 39, 'Impetigo': 40
|
75 |
+
}
|
76 |
+
|
77 |
+
# Replace prognosis values with numerical categories
|
78 |
+
df.replace({'prognosis': disease_dict}, inplace=True)
|
79 |
+
|
80 |
+
# Check unique values in prognosis for debugging
|
81 |
+
print("Unique values in prognosis after mapping:", df['prognosis'].unique())
|
82 |
+
|
83 |
+
# Ensure prognosis is purely numerical after mapping
|
84 |
+
if df['prognosis'].dtype == 'object': # Check for unmapped entries
|
85 |
+
raise ValueError(f"The prognosis contains unmapped values: {df['prognosis'].unique()}")
|
86 |
+
|
87 |
+
df['prognosis'] = df['prognosis'].astype(int) # Convert to integer
|
88 |
+
|
89 |
+
df = df.infer_objects() # Remove 'copy' argument
|
90 |
+
|
91 |
+
# Similar process for the testing data
|
92 |
+
tr.replace({'prognosis': disease_dict}, inplace=True)
|
93 |
+
|
94 |
+
# Ensure it is also numerical
|
95 |
+
if tr['prognosis'].dtype == 'object':
|
96 |
+
raise ValueError(f"Testing data prognosis contains unmapped values: {tr['prognosis'].unique()}")
|
97 |
+
|
98 |
+
tr['prognosis'] = tr['prognosis'].astype(int) # Convert to integer if necessary
|
99 |
+
tr = tr.infer_objects() # Remove 'copy' argument
|
100 |
+
|
101 |
+
return df, tr, disease_dict
|
102 |
+
|
103 |
+
df, tr, disease_dict = load_data()
|
104 |
+
l1 = list(df.columns[:-1]) # All columns except prognosis
|
105 |
+
X = df[l1]
|
106 |
+
y = df['prognosis']
|
107 |
+
X_test = tr[l1]
|
108 |
+
y_test = tr['prognosis']
|
109 |
+
|
110 |
+
# Encode the target variable with LabelEncoder if still in string format
|
111 |
+
le = LabelEncoder()
|
112 |
+
y_encoded = le.fit_transform(y) # Needs to be string labels, assuming df['prognosis'] has no numerical labels
|
113 |
+
|
114 |
+
def train_models():
|
115 |
+
models = {
|
116 |
+
"Decision Tree": DecisionTreeClassifier(),
|
117 |
+
"Random Forest": RandomForestClassifier(),
|
118 |
+
"Naive Bayes": GaussianNB()
|
119 |
+
}
|
120 |
+
trained_models = {}
|
121 |
+
for model_name, model_obj in models.items():
|
122 |
+
model_obj.fit(X, y_encoded) # Use encoded labels
|
123 |
+
acc = accuracy_score(y_test, model_obj.predict(X_test))
|
124 |
+
trained_models[model_name] = (model_obj, acc)
|
125 |
+
return trained_models
|
126 |
+
|
127 |
+
trained_models = train_models()
|
128 |
+
|
129 |
+
def predict_disease(model, symptoms):
|
130 |
+
input_test = np.zeros(len(l1))
|
131 |
+
for symptom in symptoms:
|
132 |
+
if symptom in l1:
|
133 |
+
input_test[l1.index(symptom)] = 1
|
134 |
+
prediction = model.predict([input_test])[0]
|
135 |
+
confidence = model.predict_proba([input_test])[0][prediction] if hasattr(model, 'predict_proba') else None
|
136 |
+
return {
|
137 |
+
"disease": list(disease_dict.keys())[list(disease_dict.values()).index(prediction)],
|
138 |
+
"confidence": confidence
|
139 |
+
}
|
140 |
+
|
141 |
+
def disease_prediction_interface(symptoms):
|
142 |
+
symptoms_selected = [s for s in symptoms if s != "None"]
|
143 |
+
|
144 |
+
if len(symptoms_selected) < 3:
|
145 |
+
return ["Please select at least 3 symptoms for accurate prediction."]
|
146 |
+
|
147 |
+
results = []
|
148 |
+
for model_name, (model, acc) in trained_models.items():
|
149 |
+
prediction_info = predict_disease(model, symptoms_selected)
|
150 |
+
predicted_disease = prediction_info["disease"]
|
151 |
+
confidence_score = prediction_info["confidence"]
|
152 |
+
|
153 |
+
result = f"{model_name} Prediction: Predicted Disease: **{predicted_disease}**"
|
154 |
+
if confidence_score is not None:
|
155 |
+
result += f" (Confidence: {confidence_score:.2f})"
|
156 |
+
result += f" (Accuracy: {acc * 100:.2f}%)"
|
157 |
+
|
158 |
+
results.append(result)
|
159 |
+
|
160 |
+
return results
|
161 |
+
|
162 |
+
# Helper Functions (for chatbot)
|
163 |
+
def bag_of_words(s, words):
|
164 |
+
bag = [0] * len(words)
|
165 |
+
s_words = word_tokenize(s)
|
166 |
+
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
167 |
+
for se in s_words:
|
168 |
+
for i, w in enumerate(words):
|
169 |
+
if w == se:
|
170 |
+
bag[i] = 1
|
171 |
+
return np.array(bag)
|
172 |
+
|
173 |
+
def generate_chatbot_response(message, history):
|
174 |
+
history = history or []
|
175 |
+
try:
|
176 |
+
result = chatbot_model.predict([bag_of_words(message, words)])
|
177 |
+
tag = labels[np.argmax(result)]
|
178 |
+
response = next((random.choice(intent["responses"]) for intent in intents_data["intents"] if intent["tag"] == tag), "I'm sorry, I didn't understand that. π€")
|
179 |
+
except Exception as e:
|
180 |
+
response = f"Error: {e}"
|
181 |
+
history.append((message, response))
|
182 |
+
return history, response
|
183 |
+
|
184 |
+
def analyze_sentiment(user_input):
|
185 |
+
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
186 |
+
with torch.no_grad():
|
187 |
+
outputs = model_sentiment(**inputs)
|
188 |
+
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
|
189 |
+
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
|
190 |
+
return f"Sentiment: {sentiment_map[sentiment_class]}"
|
191 |
+
|
192 |
+
def detect_emotion(user_input):
|
193 |
+
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
194 |
+
result = pipe(user_input)
|
195 |
+
emotion = result[0]["label"].lower().strip()
|
196 |
+
emotion_map = {
|
197 |
+
"joy": "Joy π",
|
198 |
+
"anger": "Anger π ",
|
199 |
+
"sadness": "Sadness π’",
|
200 |
+
"fear": "Fear π¨",
|
201 |
+
"surprise": "Surprise π²",
|
202 |
+
"neutral": "Neutral π",
|
203 |
+
}
|
204 |
+
return emotion_map.get(emotion, "Unknown π€"), emotion
|
205 |
+
|
206 |
+
def generate_suggestions(emotion):
|
207 |
+
emotion_key = emotion.lower()
|
208 |
+
suggestions = {
|
209 |
+
# Define suggestions based on the detected emotion
|
210 |
+
}
|
211 |
+
|
212 |
+
formatted_suggestions = [
|
213 |
+
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
|
214 |
+
]
|
215 |
+
return formatted_suggestions
|
216 |
+
|
217 |
+
def get_health_professionals_and_map(location, query):
|
218 |
+
"""Search nearby healthcare professionals using Google Maps API."""
|
219 |
+
try:
|
220 |
+
if not location or not query:
|
221 |
+
return [], "" # Return empty list if inputs are missing
|
222 |
+
|
223 |
+
geo_location = gmaps.geocode(location)
|
224 |
+
if geo_location:
|
225 |
+
lat, lng = geo_location[0]["geometry"]["location"].values()
|
226 |
+
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
|
227 |
+
professionals = []
|
228 |
+
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
229 |
+
for place in places_result:
|
230 |
+
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
231 |
+
folium.Marker(
|
232 |
+
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
233 |
+
popup=f"{place['name']}"
|
234 |
+
).add_to(map_)
|
235 |
+
return professionals, map_._repr_html_()
|
236 |
+
|
237 |
+
return [], "" # Return empty list if no professionals found
|
238 |
+
except Exception as e:
|
239 |
+
return [], "" # Return empty list on exception
|
240 |
+
|
241 |
+
# Main Application Logic
|
242 |
+
def app_function(user_input, location, query, symptoms, history):
|
243 |
+
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
244 |
+
sentiment_result = analyze_sentiment(user_input)
|
245 |
+
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
246 |
+
suggestions = generate_suggestions(cleaned_emotion)
|
247 |
+
professionals, map_html = get_health_professionals_and_map(location, query)
|
248 |
+
disease_results = disease_prediction_interface(symptoms)
|
249 |
+
|
250 |
+
return (
|
251 |
+
chatbot_history,
|
252 |
+
sentiment_result,
|
253 |
+
emotion_result,
|
254 |
+
suggestions,
|
255 |
+
professionals,
|
256 |
+
map_html,
|
257 |
+
disease_results
|
258 |
+
)
|
259 |
+
|
260 |
+
# CSS Styling
|
261 |
+
custom_css = """
|
262 |
+
body {
|
263 |
+
font-family: 'Roboto', sans-serif;
|
264 |
+
background-color: #3c6487; /* Set the background color */
|
265 |
+
color: white;
|
266 |
+
}
|
267 |
+
|
268 |
+
h1 {
|
269 |
+
background: #ffffff;
|
270 |
+
color: #000000;
|
271 |
+
border-radius: 8px;
|
272 |
+
padding: 10px;
|
273 |
+
font-weight: bold;
|
274 |
+
text-align: center;
|
275 |
+
font-size: 2.5rem;
|
276 |
+
}
|
277 |
+
|
278 |
+
textarea, input {
|
279 |
+
background: transparent;
|
280 |
+
color: black;
|
281 |
+
border: 2px solid orange;
|
282 |
+
padding: 8px;
|
283 |
+
font-size: 1rem;
|
284 |
+
caret-color: black;
|
285 |
+
outline: none;
|
286 |
+
border-radius: 8px;
|
287 |
+
}
|
288 |
+
|
289 |
+
textarea:focus, input:focus {
|
290 |
+
background: transparent;
|
291 |
+
color: black;
|
292 |
+
border: 2px solid orange;
|
293 |
+
outline: none;
|
294 |
+
}
|
295 |
+
|
296 |
+
textarea:hover, input:hover {
|
297 |
+
background: transparent;
|
298 |
+
color: black;
|
299 |
+
border: 2px solid orange;
|
300 |
+
}
|
301 |
+
|
302 |
+
.df-container {
|
303 |
+
background: white;
|
304 |
+
color: black;
|
305 |
+
border: 2px solid orange;
|
306 |
+
border-radius: 10px;
|
307 |
+
padding: 10px;
|
308 |
+
font-size: 14px;
|
309 |
+
max-height: 400px;
|
310 |
+
height: auto;
|
311 |
+
overflow-y: auto;
|
312 |
+
}
|
313 |
+
|
314 |
+
#suggestions-title {
|
315 |
+
text-align: center !important; /* Ensure the centering is applied */
|
316 |
+
font-weight: bold !important; /* Ensure bold is applied */
|
317 |
+
color: white !important; /* Ensure color is applied */
|
318 |
+
font-size: 4.2rem !important; /* Ensure font size is applied */
|
319 |
+
margin-bottom: 20px !important; /* Ensure margin is applied */
|
320 |
+
}
|
321 |
+
|
322 |
+
/* Style for the submit button */
|
323 |
+
.gr-button {
|
324 |
+
background-color: #ae1c93; /* Set the background color to #ae1c93 */
|
325 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
|
326 |
+
transition: background-color 0.3s ease;
|
327 |
+
}
|
328 |
+
|
329 |
+
.gr-button:hover {
|
330 |
+
background-color: #8f167b;
|
331 |
+
}
|
332 |
+
|
333 |
+
.gr-button:active {
|
334 |
+
background-color: #7f156b;
|
335 |
+
}
|
336 |
+
"""
|
337 |
+
|
338 |
+
# Gradio Application
|
339 |
+
with gr.Blocks(css=custom_css) as app:
|
340 |
+
gr.HTML("<h1>π Well-Being Companion</h1>")
|
341 |
+
|
342 |
+
with gr.Row():
|
343 |
+
user_input = gr.Textbox(label="Please Enter Your Message Here")
|
344 |
+
location = gr.Textbox(label="Your Current Location Here")
|
345 |
+
query = gr.Textbox(label="Search Health Professionals Nearby")
|
346 |
+
|
347 |
+
with gr.Row():
|
348 |
+
symptom1 = gr.Dropdown(choices=["None"] + l1, label="Symptom 1")
|
349 |
+
symptom2 = gr.Dropdown(choices=["None"] + l1, label="Symptom 2")
|
350 |
+
symptom3 = gr.Dropdown(choices=["None"] + l1, label="Symptom 3")
|
351 |
+
symptom4 = gr.Dropdown(choices=["None"] + l1, label="Symptom 4")
|
352 |
+
symptom5 = gr.Dropdown(choices=["None"] + l1, label="Symptom 5")
|
353 |
+
|
354 |
+
submit = gr.Button(value="Submit", variant="primary")
|
355 |
+
|
356 |
+
chatbot = gr.Chatbot(label="Chat History")
|
357 |
+
sentiment = gr.Textbox(label="Detected Sentiment")
|
358 |
+
emotion = gr.Textbox(label="Detected Emotion")
|
359 |
+
|
360 |
+
gr.Markdown("Suggestions", elem_id="suggestions-title")
|
361 |
+
|
362 |
+
suggestions = gr.DataFrame(headers=["Title", "Link"]) # Suggestions DataFrame
|
363 |
+
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) # Professionals DataFrame
|
364 |
+
map_html = gr.HTML(label="Interactive Map")
|
365 |
+
disease_predictions = gr.Textbox(label="Disease Predictions") # For Disease Prediction Results
|
366 |
+
|
367 |
+
submit.click(
|
368 |
+
app_function,
|
369 |
+
inputs=[user_input, location, query, [symptom1, symptom2, symptom3, symptom4, symptom5], chatbot],
|
370 |
+
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease_predictions],
|
371 |
+
)
|
372 |
+
|
373 |
+
app.launch()
|