Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ from sklearn.ensemble import RandomForestClassifier
|
|
20 |
from sklearn.naive_bayes import GaussianNB
|
21 |
from sklearn.metrics import accuracy_score
|
22 |
|
|
|
23 |
# Suppress TensorFlow warnings
|
24 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
25 |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
@@ -99,7 +100,7 @@ for model_name, model_obj in models.items():
|
|
99 |
acc = accuracy_score(y_test, y_pred) # Calculate accuracy
|
100 |
trained_models[model_name] = {'model': model_obj, 'accuracy': acc}
|
101 |
|
102 |
-
# Helper Functions for Chatbot
|
103 |
def bag_of_words(s, words):
|
104 |
"""Convert user input to bag-of-words vector."""
|
105 |
bag = [0] * len(words)
|
@@ -184,7 +185,7 @@ def generate_suggestions(emotion):
|
|
184 |
("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"),
|
185 |
],
|
186 |
}
|
187 |
-
|
188 |
# Create a markdown string for clickable suggestions in a table format
|
189 |
formatted_suggestions = ["### Suggestions"]
|
190 |
formatted_suggestions.append(f"Since you’re feeling {emotion}, you might find these links particularly helpful. Don’t hesitate to explore:")
|
@@ -215,7 +216,6 @@ def get_health_professionals_and_map(location, query):
|
|
215 |
popup=f"{place['name']}"
|
216 |
).add_to(map_)
|
217 |
return professionals, map_._repr_html_()
|
218 |
-
|
219 |
return [], "" # Return empty list if no professionals found
|
220 |
except Exception as e:
|
221 |
return [], "" # Return empty list on exception
|
@@ -230,43 +230,19 @@ def app_function_chatbot(user_input, location, query, history):
|
|
230 |
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
|
231 |
|
232 |
# Disease Prediction Logic
|
233 |
-
# def predict_disease(symptoms):
|
234 |
-
# """Predict disease based on input symptoms."""
|
235 |
-
# valid_symptoms = [s for s in symptoms if s is not None]
|
236 |
-
# if len(valid_symptoms) < 3:
|
237 |
-
# return "Please select at least 3 symptoms for a better prediction."
|
238 |
-
# input_test = np.zeros(len(X_train.columns)) # Create an array for feature input
|
239 |
-
# for symptom in symptoms:
|
240 |
-
# if symptom in X_train.columns:
|
241 |
-
# input_test[X_train.columns.get_loc(symptom)] = 1
|
242 |
-
# predictions = {}
|
243 |
-
# for model_name, info in trained_models.items():
|
244 |
-
# prediction = info['model'].predict([input_test])[0]
|
245 |
-
# predicted_disease = label_encoder_train.inverse_transform([prediction])[0]
|
246 |
-
# predictions[model_name] = predicted_disease
|
247 |
-
|
248 |
-
# # Create a Markdown table for displaying predictions
|
249 |
-
# markdown_output = ["### Predicted Diseases"]
|
250 |
-
# markdown_output.append("| Model | Predicted Disease |")
|
251 |
-
# markdown_output.append("|-------|------------------|") # Table headers
|
252 |
-
# for model_name, disease in predictions.items():
|
253 |
-
# markdown_output.append(f"| {model_name} | {disease} |")
|
254 |
-
|
255 |
-
# return "\n".join(markdown_output)
|
256 |
def predict_disease(symptoms):
|
257 |
"""Predict disease based on input symptoms."""
|
258 |
# Filter out None values
|
259 |
valid_symptoms = [s for s in symptoms if s is not None]
|
260 |
-
|
261 |
# Ensure at least 3 symptoms are selected
|
262 |
if len(valid_symptoms) < 3:
|
263 |
return "Please select at least 3 symptoms for a better prediction."
|
264 |
-
|
265 |
input_test = np.zeros(len(X_train.columns)) # Create an array for feature input
|
266 |
for symptom in valid_symptoms:
|
267 |
if symptom in X_train.columns:
|
268 |
input_test[X_train.columns.get_loc(symptom)] = 1
|
269 |
-
|
270 |
predictions = {}
|
271 |
for model_name, info in trained_models.items():
|
272 |
prediction = info['model'].predict([input_test])[0]
|
@@ -279,151 +255,56 @@ def predict_disease(symptoms):
|
|
279 |
markdown_output.append("|-------|------------------|") # Table headers
|
280 |
for model_name, disease in predictions.items():
|
281 |
markdown_output.append(f"| {model_name} | {disease} |")
|
282 |
-
|
283 |
-
return "\n".join(markdown_output)
|
284 |
-
|
285 |
-
|
286 |
-
from gradio.components import HTML
|
287 |
-
|
288 |
-
# Custom CSS for styling
|
289 |
-
custom_css = """
|
290 |
-
/* Importing Google Fonts */
|
291 |
-
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
|
292 |
|
293 |
-
|
294 |
-
body {
|
295 |
-
font-family: 'Roboto', sans-serif;
|
296 |
-
background-color: #f0f4f7; /* Light background for better contrast */
|
297 |
-
}
|
298 |
-
|
299 |
-
/* Header Styling */
|
300 |
-
h1, h2, h3, h4 {
|
301 |
-
font-weight: bold; /* Make all headings bold */
|
302 |
-
color: #3c6487; /* Theme color for headings */
|
303 |
-
}
|
304 |
-
|
305 |
-
h1 {
|
306 |
-
font-size: 2.5rem; /* Bigger header size */
|
307 |
-
background: linear-gradient(135deg, #3c6487, #355f7a); /* Gradient using your color */
|
308 |
-
color: #ffffff;
|
309 |
-
border-radius: 12px;
|
310 |
-
padding: 15px;
|
311 |
-
text-align: center;
|
312 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); /* Shadow effect */
|
313 |
-
margin-bottom: 20px; /* Spacing below the header */
|
314 |
-
}
|
315 |
-
|
316 |
-
/* Button Styling */
|
317 |
-
.gr-button {
|
318 |
-
background-color: #3c6487; /* Button background */
|
319 |
-
color: white;
|
320 |
-
border-radius: 8px;
|
321 |
-
padding: 10px 15px; /* Adjusted padding */
|
322 |
-
font-size: 16px; /* Font size for buttons */
|
323 |
-
border: none; /* No border */
|
324 |
-
cursor: pointer; /* Pointer on hover */
|
325 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2); /* Shadow on button */
|
326 |
-
display: inline-block; /* Inline-block to wrap text */
|
327 |
-
position: relative; /* For pseudo-element positioning */
|
328 |
-
text-decoration: none; /* Remove default underline */
|
329 |
-
}
|
330 |
-
|
331 |
-
/* Button hover states */
|
332 |
-
.gr-button:hover {
|
333 |
-
background: linear-gradient(to right, #a0c4e1, #3c6487); /* Light blue gradient on hover */
|
334 |
-
transition: background 0.3s; /* Ease the background change */
|
335 |
-
}
|
336 |
-
|
337 |
-
/* Add a blue underline effect */
|
338 |
-
.gr-button::after {
|
339 |
-
content: ""; /* Empty content for underline */
|
340 |
-
display: block;
|
341 |
-
width: 100%; /* Full width */
|
342 |
-
height: 3px; /* Height of the underline */
|
343 |
-
background: #3c6487; /* Underline color */
|
344 |
-
position: absolute;
|
345 |
-
bottom: -5px; /* Position it below the text */
|
346 |
-
left: 0;
|
347 |
-
transform: scaleX(0); /* Initially scale to 0 (invisible) */
|
348 |
-
transition: transform 0.3s; /* Smooth transition for the underline */
|
349 |
-
}
|
350 |
-
|
351 |
-
.gr-button:hover::after {
|
352 |
-
transform: scaleX(1); /* Scale to full width on hover */
|
353 |
-
}
|
354 |
-
|
355 |
-
/* Input and Textarea Styling */
|
356 |
-
textarea, input {
|
357 |
-
background: white; /* Input background */
|
358 |
-
color: black; /* Text color */
|
359 |
-
border: 2px solid #3c6487; /* Matching border color */
|
360 |
-
padding: 10px;
|
361 |
-
font-size: 1rem;
|
362 |
-
border-radius: 10px;
|
363 |
-
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); /* Light shadow for inputs */
|
364 |
-
}
|
365 |
-
|
366 |
-
textarea:focus, input:focus {
|
367 |
-
border-color: #ae1c93; /* Highlight border color on focus */
|
368 |
-
box-shadow: 0 0 5px rgba(174, 28, 147, 0.5); /* Shadow on focus */
|
369 |
-
}
|
370 |
-
|
371 |
-
/* DataFrame Container Styling */
|
372 |
-
.df-container {
|
373 |
-
background: white; /* Background for data frames */
|
374 |
-
color: black; /* Text color */
|
375 |
-
border: 2px solid #3c6487; /* Matching border color for data frames */
|
376 |
-
border-radius: 10px;
|
377 |
-
padding: 10px;
|
378 |
-
font-size: 14px;
|
379 |
-
max-height: 400px; /* Maximum height for scrolling */
|
380 |
-
overflow-y: auto; /* Enable scrolling */
|
381 |
-
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); /* Light shadow for data frame */
|
382 |
-
}
|
383 |
-
|
384 |
-
/* Suggestions Markdown Formatting */
|
385 |
-
.markdown {
|
386 |
-
padding: 15px; /* Padding for Markdown sections */
|
387 |
-
border-radius: 10px; /* Round corners for better appearance */
|
388 |
-
background-color: #eaeff1; /* Light background for suggestions */
|
389 |
-
border: 1px solid #3c6487; /* Border to distinguish */
|
390 |
-
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); /* Light shadow */
|
391 |
-
}
|
392 |
-
|
393 |
-
@media (max-width: 768px) {
|
394 |
-
h1 {
|
395 |
-
font-size: 2rem; /* Smaller font size for smaller screens */
|
396 |
-
padding: 10px;
|
397 |
-
}
|
398 |
-
|
399 |
-
.gr-button {
|
400 |
-
font-size: 0.9rem; /* Adjusted size for mobile */
|
401 |
-
padding: 8px 16px; /* Adjust padding for mobile */
|
402 |
-
width: auto; /* Maintain auto width */
|
403 |
-
}
|
404 |
|
405 |
-
textarea, input {
|
406 |
-
width: 100%; /* Full width for inputs */
|
407 |
-
margin-bottom: 10px; /* Spacing between inputs */
|
408 |
-
}
|
409 |
-
}
|
410 |
-
"""
|
411 |
# Gradio Application Interface
|
412 |
-
with gr.Blocks(
|
413 |
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
|
414 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
with gr.Tab("Well-Being Chatbot"):
|
416 |
with gr.Row():
|
417 |
user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message here...", max_lines=3)
|
418 |
-
location = gr.Textbox(label="Please Enter Your Current Location
|
419 |
query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="E.g., Health Professionals", max_lines=1)
|
420 |
-
|
421 |
submit_chatbot = gr.Button(value="Submit Your Message", variant="primary", icon="fa-paper-plane")
|
422 |
-
|
423 |
chatbot = gr.Chatbot(label="Chat History", show_label=True)
|
424 |
sentiment = gr.Textbox(label="Detected Sentiment", show_label=True)
|
425 |
emotion = gr.Textbox(label="Detected Emotion", show_label=True)
|
426 |
-
|
427 |
suggestions_markdown = gr.Markdown(label="Suggestions")
|
428 |
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
|
429 |
map_html = gr.HTML(label="Interactive Map")
|
@@ -435,14 +316,14 @@ with gr.Blocks(css=custom_css) as app:
|
|
435 |
)
|
436 |
|
437 |
with gr.Tab("Disease Prediction"):
|
438 |
-
symptom1 = gr.Dropdown(choices=[None] + X_train.columns
|
439 |
-
symptom2 = gr.Dropdown(choices=[None] + X_train.columns
|
440 |
-
symptom3 = gr.Dropdown(choices=[None] + X_train.columns
|
441 |
-
symptom4 = gr.Dropdown(choices=[None] + X_train.columns
|
442 |
-
symptom5 = gr.Dropdown(choices=[None] + X_train.columns
|
443 |
-
|
444 |
submit_disease = gr.Button(value="Predict Disease", variant="primary", icon="fa-stethoscope")
|
445 |
-
|
446 |
disease_prediction_result = gr.Markdown(label="Predicted Diseases")
|
447 |
|
448 |
submit_disease.click(
|
@@ -452,6 +333,5 @@ with gr.Blocks(css=custom_css) as app:
|
|
452 |
outputs=disease_prediction_result
|
453 |
)
|
454 |
|
455 |
-
|
456 |
# Launch the Gradio application
|
457 |
app.launch()
|
|
|
20 |
from sklearn.naive_bayes import GaussianNB
|
21 |
from sklearn.metrics import accuracy_score
|
22 |
|
23 |
+
|
24 |
# Suppress TensorFlow warnings
|
25 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
26 |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
|
100 |
acc = accuracy_score(y_test, y_pred) # Calculate accuracy
|
101 |
trained_models[model_name] = {'model': model_obj, 'accuracy': acc}
|
102 |
|
103 |
+
# Helper Functions for Chatbot (no changes)
|
104 |
def bag_of_words(s, words):
|
105 |
"""Convert user input to bag-of-words vector."""
|
106 |
bag = [0] * len(words)
|
|
|
185 |
("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"),
|
186 |
],
|
187 |
}
|
188 |
+
|
189 |
# Create a markdown string for clickable suggestions in a table format
|
190 |
formatted_suggestions = ["### Suggestions"]
|
191 |
formatted_suggestions.append(f"Since you’re feeling {emotion}, you might find these links particularly helpful. Don’t hesitate to explore:")
|
|
|
216 |
popup=f"{place['name']}"
|
217 |
).add_to(map_)
|
218 |
return professionals, map_._repr_html_()
|
|
|
219 |
return [], "" # Return empty list if no professionals found
|
220 |
except Exception as e:
|
221 |
return [], "" # Return empty list on exception
|
|
|
230 |
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
|
231 |
|
232 |
# Disease Prediction Logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
def predict_disease(symptoms):
|
234 |
"""Predict disease based on input symptoms."""
|
235 |
# Filter out None values
|
236 |
valid_symptoms = [s for s in symptoms if s is not None]
|
|
|
237 |
# Ensure at least 3 symptoms are selected
|
238 |
if len(valid_symptoms) < 3:
|
239 |
return "Please select at least 3 symptoms for a better prediction."
|
240 |
+
|
241 |
input_test = np.zeros(len(X_train.columns)) # Create an array for feature input
|
242 |
for symptom in valid_symptoms:
|
243 |
if symptom in X_train.columns:
|
244 |
input_test[X_train.columns.get_loc(symptom)] = 1
|
245 |
+
|
246 |
predictions = {}
|
247 |
for model_name, info in trained_models.items():
|
248 |
prediction = info['model'].predict([input_test])[0]
|
|
|
255 |
markdown_output.append("|-------|------------------|") # Table headers
|
256 |
for model_name, disease in predictions.items():
|
257 |
markdown_output.append(f"| {model_name} | {disease} |")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
return "\n".join(markdown_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
# Gradio Application Interface
|
262 |
+
with gr.Blocks() as app:
|
263 |
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
|
264 |
|
265 |
+
# Theme Dropdown
|
266 |
+
themes = [
|
267 |
+
"calm_seafoam",
|
268 |
+
"Ranko_test"
|
269 |
+
]
|
270 |
+
|
271 |
+
theme_dropdown = gr.Dropdown(choices=themes, label="Select Theme")
|
272 |
+
|
273 |
+
toggle_dark = gr.Button(value="Toggle Dark").style(full_width=True)
|
274 |
+
|
275 |
+
# Theme changing logic
|
276 |
+
theme_dropdown.change(
|
277 |
+
None,
|
278 |
+
None,
|
279 |
+
app,
|
280 |
+
_js=f"""
|
281 |
+
(theme) => {{
|
282 |
+
let themeElem = document.createElement('link');
|
283 |
+
themeElem.rel = 'stylesheet';
|
284 |
+
themeElem.href = '/themes/' + theme + '.css'; // Path to the theme CSS files
|
285 |
+
document.head.appendChild(themeElem);
|
286 |
+
}}
|
287 |
+
"""
|
288 |
+
)
|
289 |
+
|
290 |
+
toggle_dark.click(None, _js="""
|
291 |
+
() => {
|
292 |
+
document.body.classList.toggle('dark');
|
293 |
+
}
|
294 |
+
""")
|
295 |
+
|
296 |
with gr.Tab("Well-Being Chatbot"):
|
297 |
with gr.Row():
|
298 |
user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message here...", max_lines=3)
|
299 |
+
location = gr.Textbox(label="Please Enter Your Current Location", placeholder="E.g., Honolulu", max_lines=1)
|
300 |
query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="E.g., Health Professionals", max_lines=1)
|
301 |
+
|
302 |
submit_chatbot = gr.Button(value="Submit Your Message", variant="primary", icon="fa-paper-plane")
|
303 |
+
|
304 |
chatbot = gr.Chatbot(label="Chat History", show_label=True)
|
305 |
sentiment = gr.Textbox(label="Detected Sentiment", show_label=True)
|
306 |
emotion = gr.Textbox(label="Detected Emotion", show_label=True)
|
307 |
+
|
308 |
suggestions_markdown = gr.Markdown(label="Suggestions")
|
309 |
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
|
310 |
map_html = gr.HTML(label="Interactive Map")
|
|
|
316 |
)
|
317 |
|
318 |
with gr.Tab("Disease Prediction"):
|
319 |
+
symptom1 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 1", value=None)
|
320 |
+
symptom2 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 2", value=None)
|
321 |
+
symptom3 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 3", value=None)
|
322 |
+
symptom4 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 4", value=None)
|
323 |
+
symptom5 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 5", value=None)
|
324 |
+
|
325 |
submit_disease = gr.Button(value="Predict Disease", variant="primary", icon="fa-stethoscope")
|
326 |
+
|
327 |
disease_prediction_result = gr.Markdown(label="Predicted Diseases")
|
328 |
|
329 |
submit_disease.click(
|
|
|
333 |
outputs=disease_prediction_result
|
334 |
)
|
335 |
|
|
|
336 |
# Launch the Gradio application
|
337 |
app.launch()
|