Spaces:
Runtime error
Runtime error
File size: 21,784 Bytes
9bb2c84 4ff688d 9bb2c84 d63ac5e 9bb2c84 4ff688d 9bb2c84 4ff688d 9bb2c84 4ff688d 9bb2c84 4ff688d 9bb2c84 4ff688d 9bb2c84 4ff688d 9bb2c84 4ff688d 9bb2c84 7351996 9bb2c84 03563f3 9bb2c84 e8ec88b 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 4ff688d 4d9ad4a 4ff688d 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 4d9ad4a 9bb2c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import streamlit as st
import requests
enable_xorbits = True
if enable_xorbits:
import xorbits
xorbits.init()
import xorbits.pandas as pd
else:
import pandas as pd
st.set_page_config(page_title="Analyzing Text Corpus on Hugging Face", page_icon=":bar_chart:", layout="wide")
st.sidebar.title('A Tool for Analyzing Text Corpus on Hugging Face')
st.sidebar.markdown(
'''
This tool retrieves parquet files from Hugging Face, identifies and quantifies
junk data, duplication, contamination, and biased content in dataset using Pandas Dataframe,
and accelerates time-consuming processes using Xorbits.
'''
)
st.sidebar.header("Please Paste The HF Dataset Name Here:")
#@st.cache_data
def load_dataset(j, name, fraction):
import os
if not os.path.exists('%s-train.gzip' % name):
with st.spinner('Downloading file from remote server'):
import pandas
train_urls = [f['url'] for f in j['parquet_files'] if f['config'] == name and f['split'] == 'train']
train_dataset = pandas.concat([pandas.read_parquet(url, engine='pyarrow') for url in train_urls], ignore_index=True)
train_dataset.to_parquet('%s-train.gzip' % name)
if not os.path.exists('%s-test.gzip' % name):
with st.spinner('Downloading file from remote server'):
import pandas
test_urls = [f['url'] for f in j['parquet_files'] if f['config'] == name and f['split'] == 'validation']
test_dataset = pandas.concat([pandas.read_parquet(url, engine='pyarrow') for url in test_urls], ignore_index=True)
test_dataset.to_parquet('%s-test.gzip' % name)
train_dataset = pd.read_parquet('%s-train.gzip' % name, engine='pyarrow')
test_dataset = pd.read_parquet('%s-test.gzip' % name, engine='pyarrow')
if enable_xorbits:
train_dataset.rebalance()
test_dataset.rebalance()
dataset = {
"train": train_dataset.sample(frac=fraction),
"test": test_dataset.sample(frac=fraction),
}
return dataset
def get_hugging_face_dataset(name):
r = requests.get("https://datasets-server.huggingface.co/parquet?dataset=" + dataset_name)
return r.json()
dataset_name = st.sidebar.text_input('Dataset Name', 'blog_authorship_corpus')
with st.spinner('Loading meta'):
hf_datasets = get_hugging_face_dataset(dataset_name)
subsets = set([x['config'] for x in hf_datasets['parquet_files']])
subset_option = st.sidebar.selectbox("Choose a subset", subsets)
sample_rate_option = st.sidebar.slider('Select sample rate', value=0.01, min_value=0.1, max_value=1.0, step=0.1)
tab0, tab1, tab2, tab3, tab4, tab5 = st.tabs(
["Introduction", "Junk Data🤖", "Biased Content🛡️", "Short Documents🌐", "Contamination🧹", "Duplication🔍"])
with tab0:
st.markdown(
'''
### Why this matters?
LLMs are trained on immense datasets to have a broader understanding of language and improve
their performance.
However, the quality of the datasets can affect the performance and biases of the models.
Large datasets often have quality issues, so practitioners need to clean and preprocess
the data to remove biases, noise, and toxicity.
This tool illustrates how to analyze and quantify the quality
of any text corpus on [Hugging Face](https://huggingface.co/blog/hub-duckdb) using pandas.
### Data Preparation
#### 1.Retrieving parquet files from Hugging Face Dataset Server
First you can get the list of the Parquet files URLs with a simple HTTP call.
```python
r = requests.get("https://datasets-server.huggingface.co/parquet?dataset=blog_authorship_corpus")
j = r.json()
urls = [f['url'] for f in j['parquet_files'] if f['split'] == 'train']
urls
['https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/blog_authorship_corpus-train-00000-of-00002.parquet',
'https://huggingface.co/datasets/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/blog_authorship_corpus/blog_authorship_corpus-train-00001-of-00002.parquet']
```
#### 2.Read URLs into Pandas Dataframe
Use the pandas library to read multiple Parquet files from a list of URLs and concatenate
them into a single DataFrame:
```python
import pandas as pd
parts = pd.read_parquet(url) for url in urls]
df = pd.concat(parts, ignore_index=True)
```
#### 3.Addressing out-of-memory & performance issues
Since the pandas library makes use of in-memory data structures to store and operate on data,
which means that if the dataset your read from hugging face is too large to fit in memory,
it will cause an error on pandas. So we use [Xorbits](https://xorbits.io) for dealing with
larger datasets and use my laptop's cpu more efficiently.
The use of Xorbits is as simple as:
```python
import xorbits.pandas as pd
import xorbits.numpy as np
```
---
'''
)
with st.expander("View raw data"):
with st.spinner("Loading..."):
datasets = load_dataset(hf_datasets, subset_option, sample_rate_option)
train, test = st.tabs([
"Train (%d rows)" % len(datasets['train']),
"Test (%d rows)" % len(datasets['test'])
])
train.dataframe(datasets['train'][:20])
test.dataframe(datasets['test'][:20])
with tab1:
st.header("Junk Data")
st.markdown('''
Large-scale datasets often contain an uneven distribution of text representation, which includes
a significant amount of nonsensical and boilerplate text - such as HTML tags.
The presence of such "noise" or irrelevant content in the dataset is detrimental to the
training of predictive models, specifically those that operate by predicting the next token based on all previous ones.
Therefore, it's crucial to clean the dataset and remove these undesired elements prior to the training phase.
This piece of Python code calculated a measure of "impurity" in text documents, and then computing
the proportion of documents that exceed a certain impurity threshold. It defines a compiled regular expression that matches
any of the following suspicious characters: `&, #, <, >, {, }, [, ]`.
''')
metrics, code = st.tabs(['Metrics', 'Code'])
with metrics:
with st.spinner('Calculating impurity ratio...'):
df = datasets['train']
import re
RE_SUSPICIOUS = re.compile(r'[&#<>{}\[\]\\]')
def impurity(text, min_len=10):
"""returns the share of suspicious characters in a text"""
if text == None or len(text) < min_len:
return 0
else:
return len(RE_SUSPICIOUS.findall(text))/len(text)
df['impurity'] = df['text'].apply(impurity, min_len=10)
total_num_docs = len(df)
impurity_num_docs = len(df[df['impurity'] > 0.01])
impurity_ratio = impurity_num_docs / total_num_docs
col1, col2, col3 = st.columns(3)
col1.metric(label="Junk Doc Count", value="%d" % impurity_num_docs)
col2.metric(label="Total Doc Count", value="%d" % total_num_docs)
col3.metric(label="Junk Doc Ratio", value="%.2f%%" % (impurity_ratio * 100))
st.dataframe(df[['text', 'impurity']].sort_values(by='impurity', ascending=False)[:20])
with code:
st.code(
'''
import re
RE_SUSPICIOUS = re.compile(r'[&#<>{}\[\]\\]')
def impurity(text, min_len=10):
"""returns the share of suspicious characters in a text"""
if text == None or len(text) < min_len:
return 0
else:
return len(RE_SUSPICIOUS.findall(text))/len(text)
df['impurity'] = df['text'].apply(impurity, min_len=10)
total_num_docs = len(df)
impurity_num_docs = len(df[df['impurity'] > 0.001])
impurity_ratio = impurity_num_docs / total_num_docs
'''
)
with tab2:
st.header('Toxic Content')
st.markdown('''
It is crucial in the training of language models to be vigilant and potentially apply tools
to exclude toxic content from the pre-training datasets. This practice helps to
prevent the models from demonstrating bias or generating detrimental content in subsequent applications.
One approach to address this issue is by scanning the text for **offensive words**.
For instance, the creators of the C4 dataset have implemented such a
filtering mechanism. The follow code references this
[word ](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en) that they open source.
The following code utilizes the word list to quantify the "biased content ratio" in the dataset.
''')
metrics, code = st.tabs(['Metrics', 'Code'])
with metrics:
with st.spinner('Calculating toxic ratio...'):
df = datasets['train']
with open('./List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words', 'r') as f:
lines = f.readlines()
banned_words = [line.rstrip('\n') for line in lines]
df['banned_words_in_text'] = df['text'].apply(lambda text: [word for word in banned_words if word in text.lower().split()])
df['matches'] = df['banned_words_in_text'].apply(lambda words: len(words) > 0)
total_num_docs = len(df)
biased_num_docs = df['matches'].sum()
biased_content_ratio = biased_num_docs / total_num_docs
col1, col2, col3 = st.columns(3)
col1.metric(label="Total Doc Count", value="%d" % total_num_docs)
col2.metric(label="Biased Doc Count", value="%d" % biased_num_docs)
col3.metric(label="Biased Ratio", value="%.2f%%" % (biased_content_ratio * 100))
st.dataframe(df[df['matches']][['text', 'banned_words_in_text']][:20])
with code:
st.code(
'''
with open('./List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words', 'r') as f:
lines = f.readlines()
banned_words = [line.rstrip('\n') for line in lines]
df['banned_words_in_text'] = df['text'].apply(lambda text: [word for word in banned_words if word in text.lower().split()])
total_num_docs = len(df)
df['matches'] = df['banned_words_in_text'].apply(lambda words: len(words) > 0)
biased_num_docs = df['matches'].sum()
biased_content_ratio = biased_num_docs / total_num_docs
'''
)
with tab3:
st.header("Too-Short Documents")
st.markdown('''
The aim of language modeling is to master the generation of text based on preceding tokens.
In this scenario, eliminating extremely brief documents (text consisting of fewer than approximately
100 tokens) from the corpus could aid in the reduction of noise, by producing contiguous text to
model dependencies within the text.
Use the Hugging Face Transformers library to tokenize text and then calculate the proportion
of documents that are "too short" in a dataset. This example converts text into tokens that the BERT
model can understand. Choose a tokenizer for your model.
''')
metrics, code = st.tabs(['Metrics', 'Code'])
with metrics:
with st.spinner('Calculating too-short ratio...'):
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
df = datasets['train']
# Create a new column with the number of tokens for each text
df['text_length'] = df['text'].apply(lambda text: len(tokenizer.tokenize(text)))
total_num_docs = len(df)
too_short_docs = len(df[df['text_length'] < 100])
too_short_doc_ratio = too_short_docs / total_num_docs
col1, col2, col3 = st.columns(3)
col1.metric(label="Too-Short Doc Count", value="%d" % too_short_docs)
col2.metric(label="Total Doc Count", value="%d" % total_num_docs)
col3.metric(label="Too Short Doc Ratio", value="%.2f%%" % (too_short_doc_ratio * 100))
# col1, _ = st.columns([2, 1])
# import seaborn as sns
# import matplotlib.pyplot as plt
# fig, ax = plt.subplots(figsize=(10, 5))
# ax.set_title('Distribution of text length (in tokens)')
# sns.histplot(data=df, x='text_length', ax=ax)
# plt.axvline(100, color='r', linestyle='--')
# col1.pyplot(fig)
with code:
st.code(
'''
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
df = datasets['train']
# Create a new column with the number of tokens for each text
df['text_length'] = df['text'].apply(lambda text: len(tokenizer.tokenize(text)))
total_num_docs = len(df)
too_short_docs = len(df[df['text_length'] < 100])
too_short_doc_ratio = too_short_docs / total_num_docs
'''
)
with tab4:
st.header('Contamination')
st.markdown('''
Typically, ensuring the segregation of training and testing data is rather straightforward in machine learning.
However, things become complicated in the context of large language models
where both the training and benchmarking datasets are collected from the internet.
For instance, the performance evaluation of a large language model using benchmark data
(like question-answer pairs) can be significantly affected if the benchmark data also features
in the model's training set. The procedure of eliminating instances from the training datasets that intersect with
the existing benchmarking datasets is called "decontamination".
This Python code below is being used to quantify the contamination problem lying in the datasets,
i.e., the proportion of documents in the test set that also appear in the training set using N-grams.
The approach here is from GPT-3 paper. OpenAI defined a test document as contaminated
if any N-gram overlap existed with any training document.
(They used a range of N values between 8 and 13 depending on dataset.)
When constructing the WebText dataset, OpenAI researchers decontaminated the data by
eliminating all Wikipedia content from the training set. This was necessary as Wikipedia
data was heavily used in their benchmark datasets.
''')
metrics, code = st.tabs(['Metrics', 'Code'])
with metrics:
with st.spinner('Calculating contamination ratio...'):
train_dataset = datasets['train']
test_dataset = datasets['test']
from nltk import ngrams
from datasketch import MinHash, MinHashLSH
def process_data(df):
minhashes = {}
for idx, text in enumerate(df['text']):
minhash = MinHash(num_perm=128)
for d in ngrams(text, 13):
s = "".join(d).encode('utf-8')
minhash.update(s)
minhashes[idx] = minhash
return minhashes
train_minhashes = process_data(train_dataset)
test_minhashes = process_data(test_dataset)
lsh = MinHashLSH(threshold=0.8, num_perm=128)
for idx, minhash in train_minhashes.items():
lsh.insert(idx, minhash)
duplicates_count = 0
for idx, minhash in test_minhashes.items():
result = lsh.query(minhash)
if len(result) > 0:
duplicates_count += 1
train_dataset_count = len(train_dataset)
test_dataset_count = len(test_dataset)
contaminate_ratio = duplicates_count / test_dataset_count
col1, col2, col3, col4 = st.columns(4)
col1.metric(label="Train Set Size", value="%d" % train_dataset_count)
col2.metric(label="Test Set Size", value="%d" % test_dataset_count)
col3.metric(label="Overlapped Docs", value="%d" % duplicates_count)
col4.metric(label="Contaminated Ratio", value="%.2f%%" % (contaminate_ratio * 100))
with code:
st.code(
'''
from nltk import ngrams
from datasketch import MinHash, MinHashLSH
def process_data(df):
minhashes = {}
for idx, r in df.iterrows():
minhash = MinHash(num_perm=128)
for d in ngrams(r['text'], 13):
s = "".join(d).encode('utf-8')
minhash.update(s)
minhashes[idx] = minhash
return minhashes
train_minhashes = process_data(train_dataset)
test_minhashes = process_data(test_dataset)
lsh = MinHashLSH(threshold=0.8, num_perm=128)
for idx, minhash in train_minhashes.items():
lsh.insert(idx, minhash)
duplicates_count = 0
for idx, minhash in test_minhashes.items():
result = lsh.query(minhash)
if len(result) > 0:
duplicates_count += 1
train_dataset_count = len(train_dataset)
test_dataset_count = len(test_dataset)
contaminate_ratio = duplicates_count / test_dataset_count
'''
)
with tab5:
st.header("Duplication")
st.markdown(
'''
When datasets are created by scraping raw text from the Internet, this will often result
in the same sequences being repeated multiple times. [This paper](https://arxiv.org/abs/2107.06499) mentions a single 50 word sequence that is
repeated in the C4 dataset 60,000 times.
Deduplication helps prevent models from outputting verbatim training data when
there are many duplicates, and makes models less vulnerable to privacy attacks.
Deduplication can also improve model training efficiency and prevent benchmark contamination.
### Tools & Tutorials
The [GPT-3](https://arxiv.org/abs/2005.14165) paper mentions they fuzzily deduplicated documents
within each dataset using Spark’s MinHashLSH implementation with 10 hashes.
[deduplicate-text-datasets](https://github.com/google-research/deduplicate-text-datasets)
is an ExactSubstr deduplication implementation (written in Rust) along with the scripts to
perform ExactSubstr deduplication and inspect the results (written in Python).
[datasketch](https://github.com/ekzhu/datasketch) gives you probabilistic data structures that
can process and search very large amount of data super fast, with little loss of accuracy.
[This article](https://huggingface.co/blog/dedup) provides a MinHash walkthrough to demonstrate
how to implement a parallelel deduplication.
The following code uses the [datasketch](https://github.com/ekzhu/datasketch) library and LSH (Locality Sensitive Hashing)
to deduplicate the dataset. For each text in the DataFrame, it creates a query MinHash object
and performs a query on the LSH index to find similar documents.
It worths to mention that the de-duplication process usually requires a lot of computational resources
(CPU and RAM) due to the size of web crawl datasets and it's therefore recommended to run such
computations in distributed settings.
'''
)
metrics, code = st.tabs(['Metrics', 'Code'])
with metrics:
with st.spinner('Calculating duplication ratio...'):
df = datasets['train']
from datasketch import MinHashLSH, MinHash
lsh = MinHashLSH(threshold=0.85, num_perm=128)
for i, text in enumerate(df['text']):
minhash = MinHash(num_perm=128)
for word in text.split():
minhash.update(word.encode('utf-8'))
lsh.insert(str(i), minhash)
unique_documents = set()
for i, text in enumerate(df['text']):
query_minhash = MinHash(num_perm=128)
for word in text.split():
query_minhash.update(word.encode('utf-8'))
results = lsh.query(query_minhash)
unique_documents.add(results[0])
total_unique_documents = len(unique_documents)
total_documents = len(df)
duplication_ratio = (total_documents - total_unique_documents) / total_documents
col1, col2, col3 = st.columns(3)
col2.metric(label="Total Documents", value="%d" % total_documents)
col1.metric(label="Unique Docs Pairs", value="%d" % total_unique_documents)
col3.metric(label="Duplication Ratio", value="%.2f%%" % (duplication_ratio * 100))
with code:
st.code(
'''
from datasketch import MinHashLSH, MinHash
lsh = MinHashLSH(threshold=0.85, num_perm=128)
for i, text in enumerate(df['text']):
minhash = MinHash(num_perm=128)
for word in text.split():
minhash.update(word.encode('utf-8'))
lsh.insert(str(i), minhash)
unique_documents = set()
for i, text in enumerate(df['text']):
query_minhash = MinHash(num_perm=128)
for word in text.split():
query_minhash.update(word.encode('utf-8'))
results = lsh.query(query_minhash)
unique_documents.add(results[0])
total_unique_documents = len(unique_documents)
total_documents = len(df)
duplication_ratio = (total_documents - total_unique_documents) / total_documents
'''
) |