Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -40,47 +40,13 @@ video_directory = "/home/user/app/video"
|
|
40 |
# im_bgr = r.plot()
|
41 |
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
|
42 |
|
43 |
-
def response(image):
|
44 |
-
print(image)
|
45 |
-
results = model(image)
|
46 |
-
text = ""
|
47 |
-
name_weap = ""
|
48 |
-
|
49 |
-
for r in results:
|
50 |
-
conf = np.array(r.boxes.conf)
|
51 |
-
cls = np.array(r.boxes.cls)
|
52 |
-
cls = cls.astype(int)
|
53 |
-
xywh = np.array(r.boxes.xywh)
|
54 |
-
xywh = xywh.astype(int)
|
55 |
-
|
56 |
-
for con, cl, xy in zip(conf, cls, xywh):
|
57 |
-
cone = con.astype(float)
|
58 |
-
conef = round(cone,3)
|
59 |
-
conef = conef * 100
|
60 |
-
text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
|
61 |
-
|
62 |
-
if cl == 0:
|
63 |
-
name_weap += name[cl] + '\n'
|
64 |
-
elif cl == 1:
|
65 |
-
name_weap += name[cl] + '\n'
|
66 |
-
elif cl == 2:
|
67 |
-
out = model2(image)
|
68 |
-
name_weap += out[0]["label"] + '\n'
|
69 |
-
elif cl == 3:
|
70 |
-
out = model2(image)
|
71 |
-
name_weap += out[0]["label"] + '\n'
|
72 |
-
|
73 |
-
|
74 |
-
# im_rgb = Image.fromarray(im_rgb)
|
75 |
-
|
76 |
-
|
77 |
-
return name_weap, text
|
78 |
-
|
79 |
-
|
80 |
|
81 |
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
|
82 |
|
83 |
-
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size
|
|
|
|
|
|
|
84 |
|
85 |
box = results[0].boxes
|
86 |
|
@@ -89,14 +55,37 @@ def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold
|
|
89 |
im = Image.fromarray(im_array[..., ::-1])
|
90 |
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
# xywh = int(results.boxes.xywh)
|
96 |
# x = xywh[0]
|
97 |
# y = xywh[1]
|
98 |
|
99 |
-
return im,
|
100 |
|
101 |
|
102 |
inputs = [
|
|
|
40 |
# im_bgr = r.plot()
|
41 |
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
|
45 |
|
46 |
+
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size
|
47 |
+
|
48 |
+
text = ""
|
49 |
+
name_weap = ""
|
50 |
|
51 |
box = results[0].boxes
|
52 |
|
|
|
55 |
im = Image.fromarray(im_array[..., ::-1])
|
56 |
|
57 |
|
58 |
+
|
59 |
+
for r in results:
|
60 |
+
conf = np.array(r.boxes.conf)
|
61 |
+
cls = np.array(r.boxes.cls)
|
62 |
+
cls = cls.astype(int)
|
63 |
+
xywh = np.array(r.boxes.xywh)
|
64 |
+
xywh = xywh.astype(int)
|
65 |
+
|
66 |
+
for con, cl, xy in zip(conf, cls, xywh):
|
67 |
+
cone = con.astype(float)
|
68 |
+
conef = round(cone,3)
|
69 |
+
conef = conef * 100
|
70 |
+
text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
|
71 |
+
|
72 |
+
if cl == 0:
|
73 |
+
name_weap += name[cl] + '\n'
|
74 |
+
elif cl == 1:
|
75 |
+
name_weap += name[cl] + '\n'
|
76 |
+
elif cl == 2:
|
77 |
+
out = model2(image)
|
78 |
+
name_weap += out[0]["label"] + '\n'
|
79 |
+
elif cl == 3:
|
80 |
+
out = model2(image)
|
81 |
+
name_weap += out[0]["label"] + '\n'
|
82 |
+
|
83 |
|
84 |
# xywh = int(results.boxes.xywh)
|
85 |
# x = xywh[0]
|
86 |
# y = xywh[1]
|
87 |
|
88 |
+
return im, text, name_weap
|
89 |
|
90 |
|
91 |
inputs = [
|