Dricz commited on
Commit
a26ffb7
1 Parent(s): ed4f354

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -9,9 +9,9 @@ import requests
9
  from io import BytesIO
10
  import os
11
 
12
- model = YOLO('80epoch.pt')
13
  model2 = pipeline('image-classification','Kaludi/csgo-weapon-classification')
14
- name = ['grenade','knife','pistol','rifle']
15
  image_directory = "/home/user/app/image"
16
  video_directory = "/home/user/app/video"
17
 
@@ -57,10 +57,10 @@ def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold
57
 
58
 
59
  for r in results:
60
- conf = np.array(r.boxes.conf)
61
- cls = np.array(r.boxes.cls)
62
  cls = cls.astype(int)
63
- xywh = np.array(r.boxes.xywh)
64
  xywh = xywh.astype(int)
65
 
66
  for con, cl, xy in zip(conf, cls, xywh):
@@ -74,9 +74,11 @@ def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold
74
  elif cl == 1:
75
  name_weap += name[cl] + '\n'
76
  elif cl == 2:
 
 
77
  out = model2(image)
78
  name_weap += out[0]["label"] + '\n'
79
- elif cl == 3:
80
  out = model2(image)
81
  name_weap += out[0]["label"] + '\n'
82
 
@@ -106,7 +108,8 @@ outputs = [gr.Image( type="pil", label="Output Image"),
106
  examples = [[os.path.join(image_directory, "th (5).jpg"),640, 0.3, 0.6],
107
  [os.path.join(image_directory, "th (8).jpg"),640, 0.3, 0.6],
108
  [os.path.join(image_directory, "th (11).jpg"),640, 0.3, 0.6],
109
- [os.path.join(image_directory, "th (3).jpg"),640, 0.3, 0.6]
 
110
  ]
111
  title = 'Weapon Detection Finetuned YOLOv8'
112
  description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'
 
9
  from io import BytesIO
10
  import os
11
 
12
+ model = YOLO('50epoch-new-weapon.pt')
13
  model2 = pipeline('image-classification','Kaludi/csgo-weapon-classification')
14
+ name = ['grenade','knife','missile','pistol','rifle']
15
  image_directory = "/home/user/app/image"
16
  video_directory = "/home/user/app/video"
17
 
 
57
 
58
 
59
  for r in results:
60
+ conf = np.array(r.boxes.conf.cpu())
61
+ cls = np.array(r.boxes.cls.cpu())
62
  cls = cls.astype(int)
63
+ xywh = np.array(r.boxes.xywh.cpu())
64
  xywh = xywh.astype(int)
65
 
66
  for con, cl, xy in zip(conf, cls, xywh):
 
74
  elif cl == 1:
75
  name_weap += name[cl] + '\n'
76
  elif cl == 2:
77
+ name_weap += name[cl] + '\n'
78
+ elif cl == 3:
79
  out = model2(image)
80
  name_weap += out[0]["label"] + '\n'
81
+ elif cl == 4:
82
  out = model2(image)
83
  name_weap += out[0]["label"] + '\n'
84
 
 
108
  examples = [[os.path.join(image_directory, "th (5).jpg"),640, 0.3, 0.6],
109
  [os.path.join(image_directory, "th (8).jpg"),640, 0.3, 0.6],
110
  [os.path.join(image_directory, "th (11).jpg"),640, 0.3, 0.6],
111
+ [os.path.join(image_directory, "th (3).jpg"),640, 0.3, 0.6],
112
+ [os.path.join(image_directory, "th.jpg"),640, 0.3, 0.6]
113
  ]
114
  title = 'Weapon Detection Finetuned YOLOv8'
115
  description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'