Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from PIL import Image
|
4 |
+
from ultralyticsplus import YOLO, render_result
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
model = YOLO('best (1).pt')
|
10 |
+
model2 = pipeline('image-classification','Kaludi/csgo-weapon-classification')
|
11 |
+
name = ['grenade','knife','pistol','rifle']
|
12 |
+
|
13 |
+
# for i, r in enumerate(results):
|
14 |
+
|
15 |
+
# # Plot results image
|
16 |
+
# im_bgr = r.plot()
|
17 |
+
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
|
18 |
+
|
19 |
+
def response(image):
|
20 |
+
print(image)
|
21 |
+
results = model(image)
|
22 |
+
text = ""
|
23 |
+
name_weap = ""
|
24 |
+
|
25 |
+
for r in results:
|
26 |
+
conf = np.array(r.boxes.conf)
|
27 |
+
cls = np.array(r.boxes.cls)
|
28 |
+
cls = cls.astype(int)
|
29 |
+
xywh = np.array(r.boxes.xywh)
|
30 |
+
xywh = xywh.astype(int)
|
31 |
+
|
32 |
+
for con, cl, xy in zip(conf, cls, xywh):
|
33 |
+
cone = con.astype(float)
|
34 |
+
conef = round(cone,3)
|
35 |
+
conef = conef * 100
|
36 |
+
text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
|
37 |
+
|
38 |
+
if cl == 0:
|
39 |
+
name_weap += name[cl] + '\n'
|
40 |
+
elif cl == 1:
|
41 |
+
name_weap += name[cl] + '\n'
|
42 |
+
elif cl == 2:
|
43 |
+
out = model2(image)
|
44 |
+
name_weap += out[0]["label"] + '\n'
|
45 |
+
elif cl == 3:
|
46 |
+
out = model2(image)
|
47 |
+
name_weap += out[0]["label"] + '\n'
|
48 |
+
|
49 |
+
|
50 |
+
# im_rgb = Image.fromarray(im_rgb)
|
51 |
+
|
52 |
+
|
53 |
+
return name_weap, text
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
|
58 |
+
|
59 |
+
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
|
60 |
+
|
61 |
+
box = results[0].boxes
|
62 |
+
|
63 |
+
render = render_result(model=model, image=image, result=results[0], rect_th = 1, text_th = 1)
|
64 |
+
|
65 |
+
|
66 |
+
weapon_name, text_detection = response(image)
|
67 |
+
|
68 |
+
|
69 |
+
# xywh = int(results.boxes.xywh)
|
70 |
+
# x = xywh[0]
|
71 |
+
# y = xywh[1]
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
return render, text_detection, weapon_name
|
76 |
+
|
77 |
+
|
78 |
+
inputs = [
|
79 |
+
gr.Image(type="filepath", label="Input Image"),
|
80 |
+
gr.Slider(minimum=320, maximum=1280, value=640,
|
81 |
+
step=32, label="Image Size"),
|
82 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
|
83 |
+
step=0.05, label="Confidence Threshold"),
|
84 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
|
85 |
+
step=0.05, label="IOU Threshold"),
|
86 |
+
]
|
87 |
+
|
88 |
+
|
89 |
+
outputs = [gr.Image( type="filepath", label="Output Image"),
|
90 |
+
gr.Textbox(label="Result"),
|
91 |
+
gr.Textbox(label="Weapon Name")
|
92 |
+
]
|
93 |
+
|
94 |
+
|
95 |
+
# examples = [['th (11).jpg', 640, 0.3, 0.6],
|
96 |
+
# ['th (8).jpg', 640, 0.3, 0.6],
|
97 |
+
# ['th (3).jpg', 640, 0.3, 0.6],
|
98 |
+
# ['th.jpg', 640, 0.15, 0.6]
|
99 |
+
# ]
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs)
|
105 |
+
iface.launch(debug=True)
|