DrishtiSharma's picture
Update interim.py
4ea970f verified
import gradio as gr
import torch
import json
import uuid
import os
import time
import pytz
from datetime import datetime
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
from threading import Thread
from huggingface_hub import CommitScheduler
from pathlib import Path
import spaces
os.system("apt-get update && apt-get install -y libstdc++6")
# Load HF token from the environment
token = os.environ["HF_TOKEN"]
# Load Model and Tokenizer
model = AutoModelForCausalLM.from_pretrained(
"large-traversaal/Phi-4-Hindi",
token=token,
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
tok = AutoTokenizer.from_pretrained("large-traversaal/Phi-4-Hindi", token=token)
terminators = [tok.eos_token_id]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Set up logging folder and CommitScheduler
log_folder = Path("logs")
log_folder.mkdir(parents=True, exist_ok=True)
log_file = log_folder / f"chat_log_{uuid.uuid4()}.json"
scheduler = CommitScheduler(
repo_id="DrishtiSharma/phi-gradio-logs",
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=0.01,
token=token
)
# Fixed timezone
timezone = pytz.timezone("UTC")
@spaces.GPU(duration=60)
def chat(message, history, temperature, do_sample, max_tokens, top_p):
start_time = time.time()
timestamp = datetime.now(timezone).strftime("%Y-%m-%d %H:%M:%S %Z")
conversation_history = []
for item in history:
conversation_history.append({"role": "user", "content": item[0]})
if item[1] is not None:
conversation_history.append({"role": "assistant", "content": item[1]})
conversation_history.append({"role": "user", "content": message})
messages = tok.apply_chat_template(conversation_history, tokenize=False, add_generation_prompt=True)
model_inputs = tok([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(
tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
eos_token_id=terminators,
)
if temperature == 0:
generate_kwargs["do_sample"] = False
generation_thread = Thread(target=model.generate, kwargs=generate_kwargs)
generation_thread.start()
partial_text = ""
for new_text in streamer:
partial_text += new_text
yield partial_text
response_time = round(time.time() - start_time, 2)
log_data = {
"timestamp": timestamp,
"input": message,
"output": partial_text,
"response_time": response_time,
"temperature": temperature,
"do_sample": do_sample,
"max_tokens": max_tokens,
"top_p": top_p
}
with scheduler.lock:
with log_file.open("a", encoding="utf-8") as f:
f.write(json.dumps(log_data, ensure_ascii=False) + "\n")
# Function to clear chat history
def clear_chat():
return [], []
# Function to export chat history as a downloadable file
def export_chat(history):
if not history:
return None # No chat history to export
file_path = "chat_history.txt"
with open(file_path, "w") as f:
for msg in history:
f.write(f"User: {msg[0]}\nBot: {msg[1]}\n")
return file_path
# Gradio UI
with gr.Blocks(theme="soft") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### ⚙️🛠 Configure Settings")
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.1, label="Temperature", interactive=True)
do_sample = gr.Checkbox(label="Sampling", value=True, interactive=True)
max_tokens = gr.Slider(minimum=128, maximum=4096, step=1, value=1024, label="Max new tokens", interactive=True)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.2, label="Top-p Sampling", interactive=True)
with gr.Column(scale=3):
gr.Markdown("# 💬 Chat With Phi-4-Hindi")
chat_interface = gr.ChatInterface(
fn=chat,
examples=[
["What is the English translation of: 'इस मॉडल को हिंदी और अंग्रेजी डेटा पर प्रशिक्षित किया गया था'?"],
["टिम अपने 3 बच्चों को ट्रिक या ट्रीटिंग के लिए ले जाता है। वे 4 घंटे बाहर रहते हैं। हर घंटे वे x घरों में जाते हैं। हर घर में हर बच्चे को 3 ट्रीट मिलते हैं। उसके बच्चों को कुल 180 ट्रीट मिलते हैं। अज्ञात चर x का मान क्या है?"],
["how do you play fetch? A) throw the object for the dog to get and bring back to you. B) get the object and bring it back to the dog."]
],
additional_inputs=[temperature, do_sample, max_tokens, top_p],
stop_btn="⏹ Stop",
description="Test App",
theme="default"
)
with gr.Row():
clear_btn = gr.Button("🧹 Clear Chat", variant="secondary")
export_btn = gr.Button("📥 Export Chat", variant="secondary")
# Connect buttons to their functions
clear_btn.click(
fn=clear_chat,
outputs=[chat_interface.chatbot, chat_interface.chatbot_value]
)
export_btn.click(fn=export_chat, inputs=[chat_interface.chatbot], outputs=[gr.File()]) # Exports chat
demo.launch()