Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,32 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
-
from pandasai import SmartDataframe
|
5 |
from pandasai.llm import OpenAI
|
6 |
import tempfile
|
7 |
import matplotlib.pyplot as plt
|
8 |
from datasets import load_dataset
|
9 |
-
from langchain_groq import ChatGroq
|
10 |
-
from langchain_openai import ChatOpenAI
|
11 |
import time
|
12 |
|
|
|
|
|
13 |
|
|
|
14 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Dataset loading without caching to support progress bar
|
17 |
def load_huggingface_dataset(dataset_name):
|
18 |
-
# Initialize progress bar
|
19 |
progress_bar = st.progress(0)
|
20 |
try:
|
21 |
-
# Incrementally update progress
|
22 |
progress_bar.progress(10)
|
23 |
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
24 |
progress_bar.progress(50)
|
@@ -26,25 +34,24 @@ def load_huggingface_dataset(dataset_name):
|
|
26 |
df = dataset.to_pandas()
|
27 |
else:
|
28 |
df = pd.DataFrame(dataset)
|
29 |
-
progress_bar.progress(100)
|
30 |
return df
|
31 |
except Exception as e:
|
32 |
-
progress_bar.progress(0)
|
33 |
raise e
|
34 |
|
|
|
35 |
def load_uploaded_csv(uploaded_file):
|
36 |
-
# Initialize progress bar
|
37 |
progress_bar = st.progress(0)
|
38 |
try:
|
39 |
-
# Simulate progress
|
40 |
progress_bar.progress(10)
|
41 |
-
time.sleep(1)
|
42 |
progress_bar.progress(50)
|
43 |
df = pd.read_csv(uploaded_file)
|
44 |
-
progress_bar.progress(100)
|
45 |
return df
|
46 |
except Exception as e:
|
47 |
-
progress_bar.progress(0)
|
48 |
raise e
|
49 |
|
50 |
# Dataset selection logic
|
@@ -54,7 +61,6 @@ def load_dataset_into_session():
|
|
54 |
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True
|
55 |
)
|
56 |
|
57 |
-
# Option 1: Load dataset from the repo directory
|
58 |
if input_option == "Use Repo Directory Dataset":
|
59 |
file_path = "./source/test.csv"
|
60 |
if st.button("Load Dataset"):
|
@@ -65,11 +71,8 @@ def load_dataset_into_session():
|
|
65 |
except Exception as e:
|
66 |
st.error(f"Error loading dataset from the repo directory: {e}")
|
67 |
|
68 |
-
# Option 2: Load dataset from Hugging Face
|
69 |
elif input_option == "Use Hugging Face Dataset":
|
70 |
-
dataset_name = st.text_input(
|
71 |
-
"Enter Hugging Face Dataset Name:", value="HUPD/hupd"
|
72 |
-
)
|
73 |
if st.button("Load Dataset"):
|
74 |
try:
|
75 |
st.session_state.df = load_huggingface_dataset(dataset_name)
|
@@ -77,7 +80,6 @@ def load_dataset_into_session():
|
|
77 |
except Exception as e:
|
78 |
st.error(f"Error loading Hugging Face dataset: {e}")
|
79 |
|
80 |
-
# Option 3: Upload CSV File
|
81 |
elif input_option == "Upload CSV File":
|
82 |
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
83 |
if uploaded_file:
|
@@ -87,39 +89,23 @@ def load_dataset_into_session():
|
|
87 |
except Exception as e:
|
88 |
st.error(f"Error reading uploaded file: {e}")
|
89 |
|
90 |
-
# Load dataset into session
|
91 |
-
load_dataset_into_session()
|
92 |
-
|
93 |
-
if "df" in st.session_state and llm:
|
94 |
-
df = st.session_state.df
|
95 |
-
|
96 |
-
# Display dataset metadata
|
97 |
-
st.write("### Dataset Metadata")
|
98 |
-
st.text(f"Number of Rows: {df.shape[0]}")
|
99 |
-
st.text(f"Number of Columns: {df.shape[1]}")
|
100 |
-
st.text(f"Column Names: {', '.join(df.columns)}")
|
101 |
-
|
102 |
-
# Display dataset preview
|
103 |
-
st.write("### Dataset Preview")
|
104 |
-
num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10)
|
105 |
-
st.dataframe(df.head(num_rows))
|
106 |
-
|
107 |
-
|
108 |
# Streamlit app main
|
109 |
-
st.set_page_config(layout='wide')
|
110 |
st.title("ChatCSV powered by LLM")
|
111 |
|
|
|
|
|
112 |
|
113 |
st.header("Load Your Dataset")
|
114 |
load_dataset_into_session()
|
115 |
|
116 |
-
if not st.session_state.df.empty:
|
117 |
st.subheader("Dataset Preview")
|
118 |
-
st.
|
|
|
119 |
|
120 |
st.subheader("Chat with Your Dataset")
|
121 |
user_query = st.text_area("Enter your query:")
|
122 |
-
|
123 |
if st.button("Run Query"):
|
124 |
if user_query.strip():
|
125 |
with st.spinner("Processing your query..."):
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
+
from pandasai import SmartDataframe, PandasAI
|
5 |
from pandasai.llm import OpenAI
|
6 |
import tempfile
|
7 |
import matplotlib.pyplot as plt
|
8 |
from datasets import load_dataset
|
|
|
|
|
9 |
import time
|
10 |
|
11 |
+
# Set Streamlit page config FIRST
|
12 |
+
st.set_page_config(layout='wide')
|
13 |
|
14 |
+
# Set API key
|
15 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
16 |
|
17 |
+
# Define the LLM
|
18 |
+
llm = OpenAI(api_token=openai_api_key)
|
19 |
+
|
20 |
+
# Chat with CSV
|
21 |
+
def chat_with_csv(df, prompt):
|
22 |
+
pandas_ai = PandasAI(llm)
|
23 |
+
result = pandas_ai.run(df, prompt=prompt)
|
24 |
+
return result
|
25 |
+
|
26 |
# Dataset loading without caching to support progress bar
|
27 |
def load_huggingface_dataset(dataset_name):
|
|
|
28 |
progress_bar = st.progress(0)
|
29 |
try:
|
|
|
30 |
progress_bar.progress(10)
|
31 |
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
32 |
progress_bar.progress(50)
|
|
|
34 |
df = dataset.to_pandas()
|
35 |
else:
|
36 |
df = pd.DataFrame(dataset)
|
37 |
+
progress_bar.progress(100)
|
38 |
return df
|
39 |
except Exception as e:
|
40 |
+
progress_bar.progress(0)
|
41 |
raise e
|
42 |
|
43 |
+
# Load CSV file
|
44 |
def load_uploaded_csv(uploaded_file):
|
|
|
45 |
progress_bar = st.progress(0)
|
46 |
try:
|
|
|
47 |
progress_bar.progress(10)
|
48 |
+
time.sleep(1)
|
49 |
progress_bar.progress(50)
|
50 |
df = pd.read_csv(uploaded_file)
|
51 |
+
progress_bar.progress(100)
|
52 |
return df
|
53 |
except Exception as e:
|
54 |
+
progress_bar.progress(0)
|
55 |
raise e
|
56 |
|
57 |
# Dataset selection logic
|
|
|
61 |
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True
|
62 |
)
|
63 |
|
|
|
64 |
if input_option == "Use Repo Directory Dataset":
|
65 |
file_path = "./source/test.csv"
|
66 |
if st.button("Load Dataset"):
|
|
|
71 |
except Exception as e:
|
72 |
st.error(f"Error loading dataset from the repo directory: {e}")
|
73 |
|
|
|
74 |
elif input_option == "Use Hugging Face Dataset":
|
75 |
+
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
|
|
|
|
|
76 |
if st.button("Load Dataset"):
|
77 |
try:
|
78 |
st.session_state.df = load_huggingface_dataset(dataset_name)
|
|
|
80 |
except Exception as e:
|
81 |
st.error(f"Error loading Hugging Face dataset: {e}")
|
82 |
|
|
|
83 |
elif input_option == "Upload CSV File":
|
84 |
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
85 |
if uploaded_file:
|
|
|
89 |
except Exception as e:
|
90 |
st.error(f"Error reading uploaded file: {e}")
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Streamlit app main
|
|
|
93 |
st.title("ChatCSV powered by LLM")
|
94 |
|
95 |
+
if "df" not in st.session_state:
|
96 |
+
st.session_state.df = pd.DataFrame()
|
97 |
|
98 |
st.header("Load Your Dataset")
|
99 |
load_dataset_into_session()
|
100 |
|
101 |
+
if "df" in st.session_state and not st.session_state.df.empty:
|
102 |
st.subheader("Dataset Preview")
|
103 |
+
num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10)
|
104 |
+
st.dataframe(st.session_state.df.head(num_rows))
|
105 |
|
106 |
st.subheader("Chat with Your Dataset")
|
107 |
user_query = st.text_area("Enter your query:")
|
108 |
+
|
109 |
if st.button("Run Query"):
|
110 |
if user_query.strip():
|
111 |
with st.spinner("Processing your query..."):
|