Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from pandasai.llm.openai import OpenAI
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
from pandasai import PandasAI
|
7 |
+
from datasets import load_dataset
|
8 |
+
import time
|
9 |
+
|
10 |
+
|
11 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
12 |
+
|
13 |
+
def chat_with_csv(df, prompt):
|
14 |
+
llm = OpenAI(api_token=openai_api_key)
|
15 |
+
pandas_ai = PandasAI(llm)
|
16 |
+
result = pandas_ai.run(df, prompt=prompt)
|
17 |
+
return result
|
18 |
+
|
19 |
+
def load_huggingface_dataset(dataset_name):
|
20 |
+
progress_bar = st.progress(0)
|
21 |
+
try:
|
22 |
+
progress_bar.progress(10)
|
23 |
+
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
24 |
+
progress_bar.progress(50)
|
25 |
+
if hasattr(dataset, "to_pandas"):
|
26 |
+
df = dataset.to_pandas()
|
27 |
+
else:
|
28 |
+
df = pd.DataFrame(dataset)
|
29 |
+
progress_bar.progress(100)
|
30 |
+
return df
|
31 |
+
except Exception as e:
|
32 |
+
progress_bar.progress(0)
|
33 |
+
raise e
|
34 |
+
|
35 |
+
def load_uploaded_csv(uploaded_file):
|
36 |
+
progress_bar = st.progress(0)
|
37 |
+
try:
|
38 |
+
progress_bar.progress(10)
|
39 |
+
time.sleep(1)
|
40 |
+
progress_bar.progress(50)
|
41 |
+
df = pd.read_csv(uploaded_file)
|
42 |
+
progress_bar.progress(100)
|
43 |
+
return df
|
44 |
+
except Exception as e:
|
45 |
+
progress_bar.progress(0)
|
46 |
+
raise e
|
47 |
+
|
48 |
+
def load_dataset_into_session():
|
49 |
+
input_option = st.radio(
|
50 |
+
"Select Dataset Input:",
|
51 |
+
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"],
|
52 |
+
index=1,
|
53 |
+
horizontal=True
|
54 |
+
)
|
55 |
+
|
56 |
+
if input_option == "Use Repo Directory Dataset":
|
57 |
+
file_path = "./source/test.csv"
|
58 |
+
if st.button("Load Dataset"):
|
59 |
+
try:
|
60 |
+
with st.spinner("Loading dataset from the repo directory..."):
|
61 |
+
st.session_state.df = pd.read_csv(file_path)
|
62 |
+
st.success(f"File loaded successfully from '{file_path}'!")
|
63 |
+
except Exception as e:
|
64 |
+
st.error(f"Error loading dataset from the repo directory: {e}")
|
65 |
+
|
66 |
+
elif input_option == "Use Hugging Face Dataset":
|
67 |
+
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
|
68 |
+
if st.button("Load Dataset"):
|
69 |
+
try:
|
70 |
+
st.session_state.df = load_huggingface_dataset(dataset_name)
|
71 |
+
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
|
72 |
+
except Exception as e:
|
73 |
+
st.error(f"Error loading Hugging Face dataset: {e}")
|
74 |
+
|
75 |
+
elif input_option == "Upload CSV File":
|
76 |
+
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
77 |
+
if uploaded_file:
|
78 |
+
try:
|
79 |
+
st.session_state.df = load_uploaded_csv(uploaded_file)
|
80 |
+
st.success("File uploaded successfully!")
|
81 |
+
except Exception as e:
|
82 |
+
st.error(f"Error reading uploaded file: {e}")
|
83 |
+
|
84 |
+
# Streamlit app main
|
85 |
+
st.set_page_config(layout='wide')
|
86 |
+
st.title("ChatCSV powered by LLM")
|
87 |
+
|
88 |
+
# Ensure session state for the dataframe
|
89 |
+
if "df" not in st.session_state:
|
90 |
+
st.session_state.df = pd.DataFrame() # Initialize with an empty dataframe
|
91 |
+
|
92 |
+
st.header("Load Your Dataset")
|
93 |
+
load_dataset_into_session()
|
94 |
+
|
95 |
+
if not st.session_state.df.empty:
|
96 |
+
st.subheader("Dataset Preview")
|
97 |
+
st.dataframe(st.session_state.df, use_container_width=True)
|
98 |
+
|
99 |
+
st.subheader("Chat with Your Dataset")
|
100 |
+
user_query = st.text_area("Enter your query:")
|
101 |
+
|
102 |
+
if st.button("Run Query"):
|
103 |
+
if user_query.strip():
|
104 |
+
with st.spinner("Processing your query..."):
|
105 |
+
try:
|
106 |
+
result = chat_with_csv(st.session_state.df, user_query)
|
107 |
+
st.success(result)
|
108 |
+
except Exception as e:
|
109 |
+
st.error(f"Error processing your query: {e}")
|
110 |
+
else:
|
111 |
+
st.warning("Please enter a query before running.")
|