File size: 41,863 Bytes
c4cd3b0 27d41c8 c4cd3b0 0f450f2 c4cd3b0 c5009ae c4cd3b0 f560497 a5d91d6 f560497 a5d91d6 f560497 a5d91d6 f560497 8457558 8470418 f560497 8457558 f560497 c4cd3b0 f560497 c4cd3b0 f560497 c4cd3b0 f560497 7ad4dda c4cd3b0 7ad4dda c4cd3b0 7ad4dda c4cd3b0 7ad4dda c4cd3b0 7ad4dda c4cd3b0 7ad4dda c4cd3b0 27d41c8 c4cd3b0 27d41c8 c4cd3b0 27d41c8 c4cd3b0 27d41c8 c4cd3b0 27d41c8 c4cd3b0 27d41c8 c4cd3b0 27d41c8 c4cd3b0 27d41c8 c4cd3b0 27d41c8 c4cd3b0 f560497 c4cd3b0 f560497 c4cd3b0 f560497 c4cd3b0 f560497 4138967 8457558 c4cd3b0 53c0b33 c4cd3b0 53c0b33 c4cd3b0 c3bf3f1 c4cd3b0 53c0b33 c4cd3b0 53c0b33 c4cd3b0 53c0b33 c4cd3b0 53c0b33 c4cd3b0 53c0b33 c4cd3b0 53c0b33 c4cd3b0 53c0b33 c4cd3b0 53c0b33 c4cd3b0 16132cd a5d91d6 16132cd a5d91d6 53c0b33 a5d91d6 53c0b33 c4cd3b0 53c0b33 c4cd3b0 53c0b33 8470418 c4cd3b0 53c0b33 c4cd3b0 e3d43b2 c4cd3b0 e3d43b2 c4cd3b0 8470418 c4cd3b0 fd1a052 c4cd3b0 fd1a052 c4cd3b0 fd1a052 c4cd3b0 fd1a052 c4cd3b0 fd1a052 c4cd3b0 fd1a052 c4cd3b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 |
# ref: https://github.com/twy80/LangChain_llm_Agent/tree/main
import streamlit as st
import os, base64, re, requests, datetime, time, json
import matplotlib.pyplot as plt
from io import BytesIO
from functools import partial
from tempfile import NamedTemporaryFile
from audio_recorder_streamlit import audio_recorder
from PIL import Image, UnidentifiedImageError
from openai import OpenAI
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_community import GoogleSearchAPIWrapper
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import HumanMessage, AIMessage
from langchain_community.utilities import BingSearchAPIWrapper
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.document_loaders import Docx2txtLoader
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.tools import Tool, tool
from langchain.tools.retriever import create_retriever_tool
# from langchain.agents import create_openai_tools_agent
from langchain.agents import create_tool_calling_agent
from langchain.agents import create_react_agent
from langchain.agents import AgentExecutor
from langchain_community.agent_toolkits.load_tools import load_tools
# from langchain_experimental.tools import PythonREPLTool
from langchain_experimental.utilities import PythonREPL
from langchain.callbacks.base import BaseCallbackHandler
from pydantic import BaseModel, Field
# The following are for type annotations
from typing import Union, List, Literal, Optional, Dict, Any, Annotated
from matplotlib.figure import Figure
from streamlit.runtime.uploaded_file_manager import UploadedFile
from openai._legacy_response import HttpxBinaryResponseContent
from tempfile import NamedTemporaryFile, TemporaryDirectory
# Load API keys from Hugging Face secrets
try:
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
os.environ["BING_SUBSCRIPTION_KEY"] = st.secrets.get("BING_SUBSCRIPTION_KEY", "")
os.environ["GOOGLE_API_KEY"] = st.secrets.get("GOOGLE_API_KEY", "")
os.environ["GOOGLE_CSE_ID"] = st.secrets.get("GOOGLE_CSE_ID", "")
except KeyError as e:
st.error(f"Missing required secret: {e}. Please set it in Hugging Face Space secrets.")
st.stop()
def initialize_session_state_variables() -> None:
"""
Initialize all the session state variables.
"""
default_values = {
"ready": False,
"openai": None,
"history": [],
"model_type": "GPT Models from OpenAI",
"agent_type": 2 * ["Tool Calling"],
"ai_role": 2 * ["You are a helpful AI assistant."],
"prompt_exists": False,
"temperature": [0.7, 0.7],
"audio_bytes": None,
"mic_used": False,
"audio_response": None,
"image_url": None,
"image_description": None,
"uploader_key": 0,
"tool_names": [[], []],
"bing_subscription_validity": False,
"google_cse_id_validity": False,
"vector_store_message": None,
"retriever_tool": None,
"show_uploader": False
}
for key, value in default_values.items():
if key not in st.session_state:
st.session_state[key] = value
class StreamHandler(BaseCallbackHandler):
def __init__(self, container, initial_text=""):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: Any, **kwargs) -> None:
new_text = self._extract_text(token)
if new_text:
self.text += new_text
self.container.markdown(self.text)
def _extract_text(self, token: Any) -> str:
if isinstance(token, str):
return token
elif isinstance(token, list):
return ''.join(self._extract_text(t) for t in token)
elif isinstance(token, dict):
return token.get('text', '')
else:
return str(token)
def check_api_keys() -> None:
# Unset this flag to check the validity of the OpenAI API key
st.session_state.ready = False
def message_history_to_string(extra_space: bool=True) -> str:
"""
Return a string of the chat history contained in
st.session_state.history.
"""
history_list = []
for msg in st.session_state.history:
if isinstance(msg, HumanMessage):
history_list.append(f"Human: {msg.content}")
else:
history_list.append(f"AI: {msg.content}")
new_lines = "\n\n" if extra_space else "\n"
return new_lines.join(history_list)
def get_chat_model(
model: str,
temperature: float,
callbacks: List[BaseCallbackHandler]
) -> Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI, None]:
"""
Get the appropriate chat model based on the given model name.
"""
model_map = {
"gpt-": ChatOpenAI,
}
for prefix, ModelClass in model_map.items():
if model.startswith(prefix):
return ModelClass(
model=model,
temperature=temperature,
streaming=True,
callbacks=callbacks
)
return None
def process_with_images(
llm: Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI],
message_content: str,
image_urls: List[str]
) -> str:
"""
Process the given history query with associated images using a language model.
"""
content_with_images = (
[{"type": "text", "text": message_content}] +
[{"type": "image_url", "image_url": {"url": url}} for url in image_urls]
)
message_with_images = [HumanMessage(content=content_with_images)]
return llm.invoke(message_with_images).content
def process_with_tools(
llm: Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI],
tools: List[Tool],
agent_type: str,
agent_prompt: str,
history_query: dict
) -> str:
"""
Create an AI agent based on the specified agent type and tools,
then use this agent to process the given history query.
"""
if agent_type == "Tool Calling":
agent = create_tool_calling_agent(llm, tools, agent_prompt)
else:
agent = create_react_agent(llm, tools, agent_prompt)
agent_executor = AgentExecutor(
agent=agent, tools=tools, max_iterations=5, verbose=False,
handle_parsing_errors=True,
)
return agent_executor.invoke(history_query)["output"]
def run_agent(
query: str,
model: str,
tools: List[Tool],
image_urls: List[str],
temperature: float=0.7,
agent_type: Literal["Tool Calling", "ReAct"]="Tool Calling",
) -> Union[str, None]:
"""
Generate text based on user queries.
Args:
query: User's query
model: LLM like "gpt-4o"
tools: list of tools such as Search and Retrieval
image_urls: List of URLs for images
temperature: Value between 0 and 1. Defaults to 0.7
agent_type: 'Tool Calling' or 'ReAct'
Return:
generated text
"""
try:
# Ensure retriever tool is included when "Retrieval" is selected
if "Retrieval" in st.session_state.tool_names[0]:
if st.session_state.retriever_tool:
retriever_tool_name = "retriever" # Ensure naming consistency
if retriever_tool_name not in [tool.name for tool in tools]:
tools.append(st.session_state.retriever_tool)
st.write(f"β
**{retriever_tool_name} tool has been added successfully.**")
else:
st.error("β Retriever tool is not initialized. Please create a vector store first.")
return None # Exit early to avoid broken tool usage
# Debugging: Print final tools list
st.write("**Final Tools Being Used:**", [tool.name for tool in tools])
if "retriever" in [tool.name for tool in tools]:
st.success("β
Retriever tool is confirmed and ready for use.")
elif "Retrieval" in st.session_state.tool_names[0]:
st.warning("β οΈ 'Retrieval' was selected but the retriever tool is missing!")
# Initialize the LLM model
llm = get_chat_model(model, temperature, [StreamHandler(st.empty())])
if llm is None:
st.error(f"β Unsupported model: {model}", icon="π¨")
return None
# Prepare chat history
if agent_type == "Tool Calling":
chat_history = st.session_state.history
else:
chat_history = message_history_to_string()
history_query = {"chat_history": chat_history, "input": query}
# Generate message content
message_with_no_image = st.session_state.chat_prompt.invoke(history_query)
message_content = message_with_no_image.messages[0].content
if image_urls:
# Handle images if provided
generated_text = process_with_images(llm, message_content, image_urls)
human_message = HumanMessage(
content=query, additional_kwargs={"image_urls": image_urls}
)
elif tools:
# Use tools for query execution
generated_text = process_with_tools(
llm, tools, agent_type, st.session_state.agent_prompt, history_query
)
human_message = HumanMessage(content=query)
else:
# Fall back to basic query execution without tools
generated_text = llm.invoke(message_with_no_image).content
human_message = HumanMessage(content=query)
# Convert response into plain text
if isinstance(generated_text, list):
generated_text = generated_text[0]["text"]
# Update conversation history
st.session_state.history.append(human_message)
st.session_state.history.append(AIMessage(content=generated_text))
return generated_text
except Exception as e:
st.error(f"An error occurred: {e}", icon="π¨")
return None
def openai_create_image(
description: str, model: str="dall-e-3", size: str="1024x1024"
) -> Optional[str]:
"""
Generate image based on user description.
Args:
description: User description
model: Default set to "dall-e-3"
size: Pixel size of the generated image
Return:
URL of the generated image
"""
try:
with st.spinner("AI is generating..."):
response = st.session_state.openai.images.generate(
model=model,
prompt=description,
size=size,
quality="standard",
n=1,
)
image_url = response.data[0].url
except Exception as e:
image_url = None
st.error(f"An error occurred: {e}", icon="π¨")
return image_url
def get_vector_store(uploaded_files: List[UploadedFile]) -> Optional[FAISS]:
"""
Take a list of UploadedFile objects as input, and return a FAISS vector store.
"""
if not uploaded_files:
return None
documents = []
loader_map = {
".pdf": PyPDFLoader,
".txt": TextLoader,
".docx": Docx2txtLoader
}
try:
# Use a temporary directory instead of a fixed 'files/' directory
with TemporaryDirectory() as temp_dir:
for uploaded_file in uploaded_files:
# Create a temporary file in the system's temporary directory
with NamedTemporaryFile(dir=temp_dir, delete=False) as temp_file:
temp_file.write(uploaded_file.getbuffer())
filepath = temp_file.name
file_ext = os.path.splitext(uploaded_file.name.lower())[1]
loader_class = loader_map.get(file_ext)
if not loader_class:
st.error(f"Unsupported file type: {file_ext}", icon="π¨")
return None
# Load the document using the selected loader
loader = loader_class(filepath)
documents.extend(loader.load())
with st.spinner("Vector store in preparation..."):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=200
)
doc = text_splitter.split_documents(documents)
# Choose embeddings
if st.session_state.model_type == "GPT Models from OpenAI":
embeddings = OpenAIEmbeddings(model="text-embedding-3-large", dimensions=1536)
else:
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
# Create FAISS vector database
vector_store = FAISS.from_documents(doc, embeddings)
except Exception as e:
vector_store = None
st.error(f"An error occurred: {e}", icon="π¨")
return vector_store
def get_retriever() -> None:
"""
Upload document(s), create a vector store, prepare a retriever tool,
save the tool to the variable st.session_state.retriever_tool.
"""
# Section Title
st.write("")
st.write("**Query Document(s)**")
# File Upload Input
uploaded_files = st.file_uploader(
label="Upload an article",
type=["txt", "pdf", "docx"],
accept_multiple_files=True,
label_visibility="collapsed",
key="document_upload_" + str(st.session_state.uploader_key),
)
# Check if files are uploaded
if uploaded_files:
# Use a unique button key to avoid duplicate presses
if st.button(label="Create the vector store", key=f"create_vector_{st.session_state.uploader_key}"):
st.info("Creating the vector store and initializing the retriever tool...")
# Attempt to create the vector store
vector_store = get_vector_store(uploaded_files)
if vector_store:
uploaded_file_names = [file.name for file in uploaded_files]
st.session_state.vector_store_message = (
f"Vector store for :blue[[{', '.join(uploaded_file_names)}]] is ready!"
)
# Initialize retriever and create tool
retriever = vector_store.as_retriever()
st.session_state.retriever_tool = create_retriever_tool(
retriever,
name="retriever",
description="Search uploaded documents for information when queried.",
)
# Add "Retrieval" to the tools list if not already present
if "Retrieval" not in st.session_state.tool_names[0]:
st.session_state.tool_names[0].append("Retrieval")
st.success("β
Retriever tool has been successfully initialized and is ready to use.")
# Debugging output
st.write("**Current Tools:**", st.session_state.tool_names[0])
else:
st.error("β Failed to create vector store. Please check the uploaded files (supported formats: txt, pdf, docx).")
else:
st.info("Please upload document(s) to create the vector store.")
def display_text_with_equations(text: str):
# Replace inline LaTeX equation delimiters \\( ... \\) with $
modified_text = text.replace("\\(", "$").replace("\\)", "$")
# Replace block LaTeX equation delimiters \\[ ... \\] with $$
modified_text = modified_text.replace("\\[", "$$").replace("\\]", "$$")
# Use st.markdown to display the formatted text with equations
st.markdown(modified_text)
def read_audio(audio_bytes: bytes) -> Optional[str]:
"""
Read audio bytes and return the corresponding text.
"""
try:
audio_data = BytesIO(audio_bytes)
audio_data.name = "recorded_audio.wav" # dummy name
transcript = st.session_state.openai.audio.transcriptions.create(
model="whisper-1", file=audio_data
)
text = transcript.text
except Exception as e:
text = None
st.error(f"An error occurred: {e}", icon="π¨")
return text
def input_from_mic() -> Optional[str]:
"""
Convert audio input from mic to text and return it.
If there is no audio input, None is returned.
"""
time.sleep(0.5)
audio_bytes = audio_recorder(
pause_threshold=3.0, text="Speak", icon_size="2x",
recording_color="#e87070", neutral_color="#6aa36f"
)
if audio_bytes == st.session_state.audio_bytes or audio_bytes is None:
return None
else:
st.session_state.audio_bytes = audio_bytes
return read_audio(audio_bytes)
def perform_tts(text: str) -> Optional[HttpxBinaryResponseContent]:
"""
Take text as input, perform text-to-speech (TTS),
and return an audio_response.
"""
try:
with st.spinner("TTS in progress..."):
audio_response = st.session_state.openai.audio.speech.create(
model="tts-1",
voice="fable",
input=text,
)
except Exception as e:
audio_response = None
st.error(f"An error occurred: {e}", icon="π¨")
return audio_response
def play_audio(audio_response: HttpxBinaryResponseContent) -> None:
"""
Take an audio response (a bytes-like object)
from TTS as input, and play the audio.
"""
audio_data = audio_response.read()
# Encode audio data to base64
b64 = base64.b64encode(audio_data).decode("utf-8")
# Create a markdown string to embed the audio player with the base64 source
md = f"""
<audio controls autoplay style="width: 100%;">
<source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
Your browser does not support the audio element.
</audio>
"""
# Use Streamlit to render the audio player
st.markdown(md, unsafe_allow_html=True)
def image_to_base64(image: Image) -> str:
"""
Convert an image object from PIL to a base64-encoded image,
and return the resulting encoded image as a string to be used
in place of a URL.
"""
# Convert the image to RGB mode if necessary
if image.mode != "RGB":
image = image.convert("RGB")
# Save the image to a BytesIO object
buffered_image = BytesIO()
image.save(buffered_image, format="JPEG")
# Convert BytesIO to bytes and encode to base64
img_str = base64.b64encode(buffered_image.getvalue())
# Convert bytes to string
base64_image = img_str.decode("utf-8")
return f"data:image/jpeg;base64,{base64_image}"
def shorten_image(image: Image, max_pixels: int=1024) -> Image:
"""
Take an Image object as input, and shorten the image size
if the image is greater than max_pixels x max_pixels.
"""
if max(image.width, image.height) > max_pixels:
if image.width > image.height:
new_width, new_height = 1024, image.height * 1024 // image.width
else:
new_width, new_height = image.width * 1024 // image.height, 1024
image = image.resize((new_width, new_height))
return image
def upload_image_files_return_urls(
type: List[str]=["jpg", "jpeg", "png", "bmp"]
) -> List[str]:
"""
Upload image files, convert them to base64-encoded images, and
return the list of the resulting encoded images to be used
in place of URLs.
"""
st.write("")
st.write("**Query Image(s)**")
source = st.radio(
label="Image selection",
options=("Uploaded", "From URL"),
horizontal=True,
label_visibility="collapsed",
)
image_urls = []
if source == "Uploaded":
uploaded_files = st.file_uploader(
label="Upload images",
type=type,
accept_multiple_files=True,
label_visibility="collapsed",
key="image_upload_" + str(st.session_state.uploader_key),
)
if uploaded_files:
try:
for image_file in uploaded_files:
image = Image.open(image_file)
thumbnail = shorten_image(image, 300)
st.image(thumbnail)
image = shorten_image(image, 1024)
image_urls.append(image_to_base64(image))
except UnidentifiedImageError as e:
st.error(f"An error occurred: {e}", icon="π¨")
else:
image_url = st.text_input(
label="URL of the image",
label_visibility="collapsed",
key="image_url_" + str(st.session_state.uploader_key),
)
if image_url:
if is_url(image_url):
st.image(image_url)
image_urls = [image_url]
else:
st.error("Enter a proper URL", icon="π¨")
return image_urls
def fig_to_base64(fig: Figure) -> str:
"""
Convert a Figure object to a base64-encoded image, and return
the resulting encoded image to be used in place of a URL.
"""
with BytesIO() as buffer:
fig.savefig(buffer, format="JPEG")
buffer.seek(0)
image = Image.open(buffer)
return image_to_base64(image)
def is_url(text: str) -> bool:
"""
Determine whether text is a URL or not.
"""
regex = r"(http|https)://([\w_-]+(?:\.[\w_-]+)+)(:\S*)?"
p = re.compile(regex)
match = p.match(text)
if match:
return True
else:
return False
def reset_conversation() -> None:
"""
Reset the session_state variables for resetting the conversation.
"""
st.session_state.history = []
st.session_state.ai_role[1] = st.session_state.ai_role[0]
st.session_state.prompt_exists = False
st.session_state.temperature[1] = st.session_state.temperature[0]
st.session_state.audio_response = None
st.session_state.vector_store_message = None
st.session_state.tool_names[1] = st.session_state.tool_names[0]
st.session_state.agent_type[1] = st.session_state.agent_type[0]
st.session_state.retriever_tool = None
st.session_state.uploader_key = 0
def switch_between_apps() -> None:
"""
Keep the chat settings when switching the mode.
"""
st.session_state.temperature[1] = st.session_state.temperature[0]
st.session_state.ai_role[1] = st.session_state.ai_role[0]
st.session_state.tool_names[1] = st.session_state.tool_names[0]
st.session_state.agent_type[1] = st.session_state.agent_type[0]
@tool
def python_repl(
code: Annotated[str, "The python code to execute to generate your chart."],
):
"""Use this to execute python code. If you want to see the output of a value,
you should print it out with `print(...)`. This is visible to the user."""
try:
result = PythonREPL().run(code)
except BaseException as e:
return f"Failed to execute. Error: {repr(e)}"
result_str = f"Successfully executed:\n```python\n{code}\n```\nStdout: {result}"
return (
result_str + "\n\nIf you have completed all tasks, respond with FINAL ANSWER."
)
def set_tools() -> List[Tool]:
"""
Set and return the tools for the agent. Tools that can be selected
are internet_search, arxiv, wikipedia, python_repl, and retrieval.
A Bing Subscription Key or Google CSE ID is required for internet_search.
"""
class MySearchToolInput(BaseModel):
query: str = Field(description="search query to look up")
# Load tools
arxiv = load_tools(["arxiv"])[0]
wikipedia = load_tools(["wikipedia"])[0]
# Python REPL is directly used here
tool_dictionary = {
"ArXiv": arxiv,
"Wikipedia": wikipedia,
"Python_REPL": python_repl,
"Retrieval": st.session_state.retriever_tool if st.session_state.retriever_tool else None
}
tool_options = ["ArXiv", "Wikipedia", "Python_REPL", "Retrieval"]
# Add Search tool dynamically if credentials are valid
if st.session_state.bing_subscription_validity:
search = BingSearchAPIWrapper()
elif st.session_state.google_cse_id_validity:
search = GoogleSearchAPIWrapper()
else:
search = None
if search is not None:
internet_search = Tool(
name="internet_search",
description=(
"A search engine for comprehensive, accurate, and trusted results. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query."
),
func=partial(search.results, num_results=5),
args_schema=MySearchToolInput,
)
tool_options.insert(0, "Search")
tool_dictionary["Search"] = internet_search
# UI for selecting tools
st.write("")
st.write("**Tools**")
tool_names = st.multiselect(
label="assistant tools",
options=tool_options,
default=st.session_state.tool_names[1],
label_visibility="collapsed",
)
# Instructions if Search tool is unavailable
if "Search" not in tool_options:
st.write(
"<small>Tools are disabled when images are uploaded and queried. "
"To search the internet, obtain your Bing Subscription Key "
"[here](https://portal.azure.com/) or Google CSE ID "
"[here](https://programmablesearchengine.google.com/about/), "
"and enter it in the sidebar. Once entered, 'Search' will be displayed "
"in the list of tools. Note also that PythonREPL from LangChain is still "
"in the experimental phase, so caution is advised.</small>",
unsafe_allow_html=True,
)
else:
st.write(
"<small>Tools are disabled when images are uploaded and queried. "
"Note also that PythonREPL from LangChain is still in the experimental phase, "
"so caution is advised.</small>",
unsafe_allow_html=True,
)
# Handle Retrieval tool initialization
if "Retrieval" in tool_names:
if not st.session_state.retriever_tool:
st.info("Creating the vector store and initializing the retriever tool...")
get_retriever()
if st.session_state.retriever_tool:
st.success("Retriever tool is ready for querying.")
tool_dictionary["Retrieval"] = st.session_state.retriever_tool
else:
st.error("Failed to initialize the retriever tool. Please upload the document again.")
tool_names.remove("Retrieval") # Prevent broken Retrieval tool
# Final tool selection
tools = [
tool_dictionary[key]
for key in tool_names if tool_dictionary[key] is not None
]
st.write("**Tools selected in set_tools:**", [tool.name for tool in tools])
st.session_state.tool_names[0] = tool_names
return tools
def set_prompts(agent_type: Literal["Tool Calling", "ReAct"]) -> None:
"""
Set chat and agent prompts for two different types of agents:
Tool Calling and ReAct.
"""
if agent_type == "Tool Calling":
st.session_state.chat_prompt = ChatPromptTemplate.from_messages([
(
"system",
f"{st.session_state.ai_role[0]} Your goal is to provide "
"answers to human inquiries. Should the information not "
"be available, inform the human explicitly that "
"the answer could not be found."
),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{input}"),
])
st.session_state.agent_prompt = ChatPromptTemplate.from_messages([
(
"system",
f"{st.session_state.ai_role[0]} Your goal is to provide answers to human inquiries. "
"You should specify the source of your answers, whether they are based on internet search "
"results ('internet_search'), scientific articles from arxiv.org ('arxiv'), Wikipedia documents ('wikipedia'), "
"uploaded documents ('retriever'), or your general knowledge. "
"Use the 'retriever' tool to answer questions specifically related to uploaded documents. "
"If you cannot find relevant information in the documents using the 'retriever' tool, explicitly inform the user. "
"Use Markdown syntax and include relevant sources, such as links (URLs)."
),
MessagesPlaceholder(variable_name="chat_history", optional=True),
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
else:
st.session_state.chat_prompt = ChatPromptTemplate.from_template(
f"{st.session_state.ai_role[0]} "
"Your goal is to provide answers to human inquiries. "
"Should the information not be available, inform the human "
"explicitly that the answer could not be found.\n\n"
"{chat_history}\n\nHuman: {input}\n\n"
"AI: "
)
st.session_state.agent_prompt = ChatPromptTemplate.from_template(
f"{st.session_state.ai_role[0]} "
"Your goal is to provide answers to human inquiries. "
"When giving your answers, tell the human what your response "
"is based on and which tools you use. Use Markdown syntax "
"and include relevant sources, such as links (URLs), following "
"MLA format. Should the information not be available, inform "
"the human explicitly that the answer could not be found.\n\n"
"TOOLS:\n"
"------\n\n"
"You have access to the following tools:\n\n"
"{tools}\n\n"
"To use a tool, please use the following format:\n\n"
"Thought: Do I need to use a tool? Yes\n"
"Action: the action to take, should be one of [{tool_names}]\n"
"Action Input: the input to the action\n"
"Observation: the result of the action\n\n"
"When you have a response to say to the Human, "
"or if you do not need to use a tool, you MUST use "
"the format:\n\n"
"Thought: Do I need to use a tool? No\n"
"Final Answer: [your response here]\n\n"
"Begin!\n\n"
"Previous conversation history:\n\n"
"{chat_history}\n\n"
"New input: {input}\n"
"{agent_scratchpad}"
)
def print_conversation(no_of_msgs: Union[Literal["All"], int]) -> None:
"""
Print the conversation stored in st.session_state.history.
"""
if no_of_msgs == "All":
no_of_msgs = len(st.session_state.history)
for msg in st.session_state.history[-no_of_msgs:]:
if isinstance(msg, HumanMessage):
with st.chat_message("human"):
st.write(msg.content)
else:
with st.chat_message("ai"):
display_text_with_equations(msg.content)
if urls := msg.additional_kwargs.get("image_urls"):
for url in urls:
st.image(url)
# Play TTS
if (
st.session_state.model_type == "GPT Models from OpenAI"
and st.session_state.audio_response is not None
):
play_audio(st.session_state.audio_response)
st.session_state.audio_response = None
def serialize_messages(
messages: List[Union[HumanMessage, AIMessage]]
) -> List[Dict]:
"""
Serialize the list of messages into a list of dicts
"""
return [msg.dict() for msg in messages]
def deserialize_messages(
serialized_messages: List[Dict]
) -> List[Union[HumanMessage, AIMessage]]:
"""
Deserialize the list of messages from a list of dicts
"""
deserialized_messages = []
for msg in serialized_messages:
if msg['type'] == 'human':
deserialized_messages.append(HumanMessage(**msg))
elif msg['type'] == 'ai':
deserialized_messages.append(AIMessage(**msg))
return deserialized_messages
def show_uploader() -> None:
"""
Set the flag to show the uploader.
"""
st.session_state.show_uploader = True
def check_conversation_keys(lst: List[Dict[str, Any]]) -> bool:
"""
Check if all items in the given list are valid conversation entries.
"""
return all(
isinstance(item, dict) and
isinstance(item.get("content"), str) and
isinstance(item.get("type"), str) and
isinstance(item.get("additional_kwargs"), dict)
for item in lst
)
def load_conversation() -> bool:
"""
Load the conversation from a JSON file
"""
st.write("")
st.write("**Choose a (JSON) conversation file**")
uploaded_file = st.file_uploader(
label="Load conversation", type="json", label_visibility="collapsed"
)
if uploaded_file:
try:
data = json.load(uploaded_file)
if isinstance(data, list) and check_conversation_keys(data):
st.session_state.history = deserialize_messages(data)
return True
st.error(
f"The uploaded data does not conform to the expected format.", icon="π¨"
)
except Exception as e:
st.error(f"An error occurred: {e}", icon="π¨")
return False
def create_text(model: str) -> None:
"""
Take an LLM as input and generate text based on user input
by calling run_agent().
"""
# initial system prompts
general_role = "You are a helpful AI assistant."
english_teacher = (
"You are an AI English teacher who analyzes texts and corrects "
"any grammatical issues if necessary."
)
translator = (
"You are an AI translator who translates English into Korean "
"and Korean into English."
)
coding_adviser = (
"You are an AI expert in coding who provides advice on "
"good coding styles."
)
science_assistant = "You are an AI science assistant."
roles = (
general_role, english_teacher, translator,
coding_adviser, science_assistant
)
with st.sidebar:
st.write("")
type_options = ("Tool Calling", "ReAct")
st.write("**Agent Type**")
st.session_state.agent_type[0] = st.sidebar.radio(
label="Agent Type",
options=type_options,
index=type_options.index(st.session_state.agent_type[1]),
label_visibility="collapsed",
)
agent_type = st.session_state.agent_type[0]
if st.session_state.model_type == "GPT Models from OpenAI":
st.write("")
st.write("**Text to Speech**")
st.session_state.tts = st.radio(
label="TTS",
options=("Enabled", "Disabled", "Auto"),
# horizontal=True,
index=1,
label_visibility="collapsed",
)
st.write("")
st.write("**Temperature**")
st.session_state.temperature[0] = st.slider(
label="Temperature (higher $\Rightarrow$ more random)",
min_value=0.0,
max_value=1.0,
value=st.session_state.temperature[1],
step=0.1,
format="%.1f",
label_visibility="collapsed",
)
st.write("")
st.write("**Messages to Show**")
no_of_msgs = st.radio(
label="$\\textsf{Messages to show}$",
options=("All", 20, 10),
label_visibility="collapsed",
horizontal=True,
index=2,
)
st.write("")
st.write("##### Message to AI")
st.session_state.ai_role[0] = st.selectbox(
label="AI's role",
options=roles,
index=roles.index(st.session_state.ai_role[1]),
label_visibility="collapsed",
)
if st.session_state.ai_role[0] != st.session_state.ai_role[1]:
reset_conversation()
st.rerun()
st.write("")
st.write("##### Conversation with AI")
# Print conversation
print_conversation(no_of_msgs)
# Reset, download, or load the conversation
c1, c2, c3 = st.columns(3)
c1.button(
label="$~\:\,\,$Reset$~\:\,\,$",
on_click=reset_conversation
)
c2.download_button(
label="Download",
data=json.dumps(serialize_messages(st.session_state.history), indent=4),
file_name="conversation_with_agent.json",
mime="application/json",
)
c3.button(
label="$~~\:\,$Load$~~\:\,$",
on_click=show_uploader,
)
if st.session_state.show_uploader and load_conversation():
st.session_state.show_uploader = False
st.rerun()
# Set the agent prompts and tools
set_prompts(agent_type)
tools = set_tools()
st.write("**Tools passed to run_agent:**", [tool.name for tool in tools])
image_urls = []
with st.sidebar:
image_urls = upload_image_files_return_urls()
if st.session_state.model_type == "GPT Models from OpenAI":
audio_input = input_from_mic()
if audio_input is not None:
query = audio_input
st.session_state.prompt_exists = True
st.session_state.mic_used = True
# Use your keyboard
text_input = st.chat_input(placeholder="Enter your query")
if text_input:
query = text_input.strip()
st.session_state.prompt_exists = True
if st.session_state.prompt_exists:
with st.chat_message("human"):
st.write(query)
with st.chat_message("ai"):
generated_text = run_agent(
query=query,
model=model,
tools=tools,
image_urls=image_urls,
temperature=st.session_state.temperature[0],
agent_type=agent_type,
)
fig = plt.gcf()
if fig and fig.get_axes():
generated_image_url = fig_to_base64(fig)
st.session_state.history[-1].additional_kwargs["image_urls"] = [
generated_image_url
]
if (
st.session_state.model_type == "GPT Models from OpenAI"
and generated_text is not None
):
# TTS under two conditions
cond1 = st.session_state.tts == "Enabled"
cond2 = st.session_state.tts == "Auto" and st.session_state.mic_used
if cond1 or cond2:
st.session_state.audio_response = perform_tts(generated_text)
st.session_state.mic_used = False
st.session_state.prompt_exists = False
if generated_text is not None:
st.session_state.uploader_key += 1
st.rerun()
def create_image(model: str) -> None:
"""
Generate image based on user description by calling openai_create_image().
"""
# Set the image size
with st.sidebar:
st.write("")
st.write("**Pixel size**")
image_size = st.radio(
label="$\\hspace{0.1em}\\texttt{Pixel size}$",
options=("1024x1024", "1792x1024", "1024x1792"),
# horizontal=True,
index=0,
label_visibility="collapsed",
)
st.write("")
st.write("##### Description for your image")
if st.session_state.image_url is not None:
st.info(st.session_state.image_description)
st.image(image=st.session_state.image_url, use_column_width=True)
# Get an image description using the microphone
if st.session_state.model_type == "GPT Models from OpenAI":
audio_input = input_from_mic()
if audio_input is not None:
st.session_state.image_description = audio_input
st.session_state.prompt_exists = True
# Get an image description using the keyboard
text_input = st.chat_input(
placeholder="Enter a description for your image",
)
if text_input:
st.session_state.image_description = text_input.strip()
st.session_state.prompt_exists = True
if st.session_state.prompt_exists:
st.session_state.image_url = openai_create_image(
st.session_state.image_description, model, image_size
)
st.session_state.prompt_exists = False
if st.session_state.image_url is not None:
st.rerun()
def create_text_image() -> None:
"""
Generate text or image by using LLM models like 'gpt-4o'.
"""
page_title = "LangChain LLM Agent"
page_icon = "π"
st.set_page_config(
page_title=page_title,
page_icon=page_icon,
layout="centered"
)
st.write(f"## {page_icon} $\,${page_title}")
# Initialize all the session state variables
initialize_session_state_variables()
# Define model options directly here
model_options = ["gpt-4o-mini", "gpt-4o", "dall-e-3"]
# Sidebar content
with st.sidebar:
st.write("**Select a Model**")
model = st.radio(
label="Models",
options=model_options,
index=1, # Default to the second option
label_visibility="collapsed",
on_change=switch_between_apps,
)
st.write("---")
st.write("xyz", unsafe_allow_html=True)
# Main logic for generating text or image
if model == "dall-e-3":
create_image(model)
else:
create_text(model)
if __name__ == "__main__":
create_text_image() |