# ref: https://github.com/twy80/LangChain_llm_Agent/tree/main import streamlit as st import os, base64, re, requests, datetime, time, json import matplotlib.pyplot as plt from io import BytesIO from functools import partial from tempfile import NamedTemporaryFile from audio_recorder_streamlit import audio_recorder from PIL import Image, UnidentifiedImageError from openai import OpenAI from langchain_openai import ChatOpenAI from langchain_openai import OpenAIEmbeddings from langchain_anthropic import ChatAnthropic from langchain_google_genai import ChatGoogleGenerativeAI from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain_google_community import GoogleSearchAPIWrapper from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.schema import HumanMessage, AIMessage from langchain_community.utilities import BingSearchAPIWrapper from langchain_community.document_loaders import PyPDFLoader from langchain_community.document_loaders import Docx2txtLoader from langchain_community.document_loaders import TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain.tools import Tool, tool from langchain.tools.retriever import create_retriever_tool # from langchain.agents import create_openai_tools_agent from langchain.agents import create_tool_calling_agent from langchain.agents import create_react_agent from langchain.agents import AgentExecutor from langchain_community.agent_toolkits.load_tools import load_tools # from langchain_experimental.tools import PythonREPLTool from langchain_experimental.utilities import PythonREPL from langchain.callbacks.base import BaseCallbackHandler from pydantic import BaseModel, Field # The following are for type annotations from typing import Union, List, Literal, Optional, Dict, Any, Annotated from matplotlib.figure import Figure from streamlit.runtime.uploaded_file_manager import UploadedFile from openai._legacy_response import HttpxBinaryResponseContent def initialize_session_state_variables() -> None: """ Initialize all the session state variables. """ # Variables for chatbot if "ready" not in st.session_state: st.session_state.ready = False if "openai" not in st.session_state: st.session_state.openai = None if "history" not in st.session_state: st.session_state.history = [] if "model_type" not in st.session_state: st.session_state.model_type = "GPT Models from OpenAI" if "agent_type" not in st.session_state: st.session_state.agent_type = 2 * ["Tool Calling"] if "ai_role" not in st.session_state: st.session_state.ai_role = 2 * ["You are a helpful AI assistant."] if "prompt_exists" not in st.session_state: st.session_state.prompt_exists = False if "temperature" not in st.session_state: st.session_state.temperature = [0.7, 0.7] # Variables for audio and image if "audio_bytes" not in st.session_state: st.session_state.audio_bytes = None if "mic_used" not in st.session_state: st.session_state.mic_used = False if "audio_response" not in st.session_state: st.session_state.audio_response = None if "image_url" not in st.session_state: st.session_state.image_url = None if "image_description" not in st.session_state: st.session_state.image_description = None if "uploader_key" not in st.session_state: st.session_state.uploader_key = 0 # Variables for tools if "tool_names" not in st.session_state: st.session_state.tool_names = [[], []] if "bing_subscription_validity" not in st.session_state: st.session_state.bing_subscription_validity = False if "google_cse_id_validity" not in st.session_state: st.session_state.google_cse_id_validity = False if "vector_store_message" not in st.session_state: st.session_state.vector_store_message = None if "retriever_tool" not in st.session_state: st.session_state.retriever_tool = None if "show_uploader" not in st.session_state: st.session_state.show_uploader = False class StreamHandler(BaseCallbackHandler): def __init__(self, container, initial_text=""): self.container = container self.text = initial_text def on_llm_new_token(self, token: Any, **kwargs) -> None: new_text = self._extract_text(token) if new_text: self.text += new_text self.container.markdown(self.text) def _extract_text(self, token: Any) -> str: if isinstance(token, str): return token elif isinstance(token, list): return ''.join(self._extract_text(t) for t in token) elif isinstance(token, dict): return token.get('text', '') else: return str(token) def is_openai_api_key_valid(openai_api_key: str) -> bool: """ Return True if the given OpenAI API key is valid. """ headers = { "Authorization": f"Bearer {openai_api_key}", } try: response = requests.get( "https://api.openai.com/v1/models", headers=headers ) return response.status_code == 200 except requests.RequestException: return False def is_anthropic_api_key_valid(anthropic_api_key: str) -> bool: """ Return True if the given Anthropic API key is valid. """ headers = { "x-api-key": anthropic_api_key, "Content-Type": "application/json", "anthropic-version": "2023-06-01" } payload = { "model": "claude-2.1", "max_tokens": 10, "messages": [ {"role": "user", "content": "Hello, world!"} ] } try: response = requests.post( "https://api.anthropic.com/v1/messages", headers=headers, json=payload, ) return response.status_code == 200 except requests.RequestException: return False def is_bing_subscription_key_valid(bing_subscription_key: str) -> bool: """ Return True if the given Bing subscription key is valid. """ if not bing_subscription_key: return False try: search = BingSearchAPIWrapper( bing_subscription_key=bing_subscription_key, bing_search_url="https://api.bing.microsoft.com/v7.0/search", k=1 ) search.run("Where can I get a Bing subscription key?") except: return False else: return True def is_google_api_key_valid(google_api_key: str) -> bool: """ Return True if the given Google API key is valid. """ if not google_api_key: return False gemini_llm = ChatGoogleGenerativeAI( model="gemini-pro", google_api_key=google_api_key ) try: gemini_llm.invoke("Hello") except: return False else: return True def are_google_api_key_cse_id_valid( google_api_key: str, google_cse_id: str ) -> bool: """ Return True if the given Google API key and CSE ID are valid. """ if google_api_key and google_cse_id: try: search = GoogleSearchAPIWrapper( google_api_key=google_api_key, google_cse_id=google_cse_id, k=1 ) search.run("Where can I get a Google CSE ID?") except: return False else: return True else: return False def check_api_keys() -> None: # Unset this flag to check the validity of the OpenAI API key st.session_state.ready = False def message_history_to_string(extra_space: bool=True) -> str: """ Return a string of the chat history contained in st.session_state.history. """ history_list = [] for msg in st.session_state.history: if isinstance(msg, HumanMessage): history_list.append(f"Human: {msg.content}") else: history_list.append(f"AI: {msg.content}") new_lines = "\n\n" if extra_space else "\n" return new_lines.join(history_list) def get_chat_model( model: str, temperature: float, callbacks: List[BaseCallbackHandler] ) -> Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI, None]: """ Get the appropriate chat model based on the given model name. """ model_map = { "gpt-": ChatOpenAI, "claude-": ChatAnthropic, "gemini-": ChatGoogleGenerativeAI } for prefix, ModelClass in model_map.items(): if model.startswith(prefix): return ModelClass( model=model, temperature=temperature, streaming=True, callbacks=callbacks ) return None def process_with_images( llm: Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI], message_content: str, image_urls: List[str] ) -> str: """ Process the given history query with associated images using a language model. """ content_with_images = ( [{"type": "text", "text": message_content}] + [{"type": "image_url", "image_url": {"url": url}} for url in image_urls] ) message_with_images = [HumanMessage(content=content_with_images)] return llm.invoke(message_with_images).content def process_with_tools( llm: Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI], tools: List[Tool], agent_type: str, agent_prompt: str, history_query: dict ) -> str: """ Create an AI agent based on the specified agent type and tools, then use this agent to process the given history query. """ if agent_type == "Tool Calling": agent = create_tool_calling_agent(llm, tools, agent_prompt) else: agent = create_react_agent(llm, tools, agent_prompt) agent_executor = AgentExecutor( agent=agent, tools=tools, max_iterations=5, verbose=False, handle_parsing_errors=True, ) return agent_executor.invoke(history_query)["output"] def run_agent( query: str, model: str, tools: List[Tool], image_urls: List[str], temperature: float=0.7, agent_type: Literal["Tool Calling", "ReAct"]="Tool Calling", ) -> Union[str, None]: """ Generate text based on user queries. Args: query: User's query model: LLM like "gpt-4o" tools: list of tools such as Search and Retrieval image_urls: List of URLs for images temperature: Value between 0 and 1. Defaults to 0.7 agent_type: 'Tool Calling' or 'ReAct' Return: generated text The chat prompt and message history are stored in st.session_state variables. """ try: llm = get_chat_model(model, temperature, [StreamHandler(st.empty())]) if llm is None: st.error(f"Unsupported model: {model}", icon="🚨") return None if agent_type == "Tool Calling": chat_history = st.session_state.history else: chat_history = message_history_to_string() history_query = {"chat_history": chat_history, "input": query} message_with_no_image = st.session_state.chat_prompt.invoke(history_query) message_content = message_with_no_image.messages[0].content if image_urls: generated_text = process_with_images(llm, message_content, image_urls) human_message = HumanMessage( content=query, additional_kwargs={"image_urls": image_urls} ) elif tools: generated_text = process_with_tools( llm, tools, agent_type, st.session_state.agent_prompt, history_query ) human_message = HumanMessage(content=query) else: generated_text = llm.invoke(message_with_no_image).content human_message = HumanMessage(content=query) if isinstance(generated_text, list): generated_text = generated_text[0]["text"] st.session_state.history.append(human_message) st.session_state.history.append(AIMessage(content=generated_text)) return generated_text except Exception as e: st.error(f"An error occurred: {e}", icon="🚨") return None def openai_create_image( description: str, model: str="dall-e-3", size: str="1024x1024" ) -> Optional[str]: """ Generate image based on user description. Args: description: User description model: Default set to "dall-e-3" size: Pixel size of the generated image Return: URL of the generated image """ try: with st.spinner("AI is generating..."): response = st.session_state.openai.images.generate( model=model, prompt=description, size=size, quality="standard", n=1, ) image_url = response.data[0].url except Exception as e: image_url = None st.error(f"An error occurred: {e}", icon="🚨") return image_url def get_vector_store(uploaded_files: List[UploadedFile]) -> Optional[FAISS]: """ Take a list of UploadedFile objects as input, and return a FAISS vector store. """ if not uploaded_files: return None documents = [] filepaths = [] loader_map = { ".pdf": PyPDFLoader, ".txt": TextLoader, ".docx": Docx2txtLoader } try: for uploaded_file in uploaded_files: # Create a temporary file within the "files/" directory with NamedTemporaryFile(dir="files/", delete=False) as file: file.write(uploaded_file.getbuffer()) filepath = file.name filepaths.append(filepath) file_ext = os.path.splitext(uploaded_file.name.lower())[1] loader_class = loader_map.get(file_ext) if not loader_class: st.error(f"Unsupported file type: {file_ext}", icon="🚨") for filepath in filepaths: if os.path.exists(filepath): os.remove(filepath) return None # Load the document using the selected loader. loader = loader_class(filepath) documents.extend(loader.load()) with st.spinner("Vector store in preparation..."): # Split the loaded text into smaller chunks for processing. text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, # separators=["\n", "\n\n", "(?<=\. )", "", " "], ) doc = text_splitter.split_documents(documents) # Create a FAISS vector database. if st.session_state.model_type == "GPT Models from OpenAI": embeddings = OpenAIEmbeddings( model="text-embedding-3-large", dimensions=1536 ) else: embeddings = GoogleGenerativeAIEmbeddings( model="models/embedding-001" ) vector_store = FAISS.from_documents(doc, embeddings) except Exception as e: vector_store = None st.error(f"An error occurred: {e}", icon="🚨") finally: # Ensure the temporary file is deleted after processing for filepath in filepaths: if os.path.exists(filepath): os.remove(filepath) return vector_store def get_retriever() -> None: """ Upload document(s), create a vector store, prepare a retriever tool, save the tool to the variable st.session_state.retriever_tool """ st.write("") st.write("**Query Document(s)**") uploaded_files = st.file_uploader( label="Upload an article", type=["txt", "pdf", "docx"], accept_multiple_files=True, label_visibility="collapsed", key="document_upload_" + str(st.session_state.uploader_key), ) if st.button(label="Create the vector store"): # Create the vector store. vector_store = get_vector_store(uploaded_files) if vector_store is not None: uploaded_file_names = [file.name for file in uploaded_files] file_names = ", ".join(uploaded_file_names) st.session_state.vector_store_message = ( f"Vector store for :blue[[{file_names}]] is ready!" ) retriever = vector_store.as_retriever() st.session_state.retriever_tool = create_retriever_tool( retriever, name="retriever", description=( "Search for information about the uploaded documents. " "For any questions about the documents, you must use " "this tool!" ), ) st.session_state.uploader_key += 1 def display_text_with_equations(text: str): # Replace inline LaTeX equation delimiters \\( ... \\) with $ modified_text = text.replace("\\(", "$").replace("\\)", "$") # Replace block LaTeX equation delimiters \\[ ... \\] with $$ modified_text = modified_text.replace("\\[", "$$").replace("\\]", "$$") # Use st.markdown to display the formatted text with equations st.markdown(modified_text) def read_audio(audio_bytes: bytes) -> Optional[str]: """ Read audio bytes and return the corresponding text. """ try: audio_data = BytesIO(audio_bytes) audio_data.name = "recorded_audio.wav" # dummy name transcript = st.session_state.openai.audio.transcriptions.create( model="whisper-1", file=audio_data ) text = transcript.text except Exception as e: text = None st.error(f"An error occurred: {e}", icon="🚨") return text def input_from_mic() -> Optional[str]: """ Convert audio input from mic to text and return it. If there is no audio input, None is returned. """ time.sleep(0.5) audio_bytes = audio_recorder( pause_threshold=3.0, text="Speak", icon_size="2x", recording_color="#e87070", neutral_color="#6aa36f" ) if audio_bytes == st.session_state.audio_bytes or audio_bytes is None: return None else: st.session_state.audio_bytes = audio_bytes return read_audio(audio_bytes) def perform_tts(text: str) -> Optional[HttpxBinaryResponseContent]: """ Take text as input, perform text-to-speech (TTS), and return an audio_response. """ try: with st.spinner("TTS in progress..."): audio_response = st.session_state.openai.audio.speech.create( model="tts-1", voice="fable", input=text, ) except Exception as e: audio_response = None st.error(f"An error occurred: {e}", icon="🚨") return audio_response def play_audio(audio_response: HttpxBinaryResponseContent) -> None: """ Take an audio response (a bytes-like object) from TTS as input, and play the audio. """ audio_data = audio_response.read() # Encode audio data to base64 b64 = base64.b64encode(audio_data).decode("utf-8") # Create a markdown string to embed the audio player with the base64 source md = f""" """ # Use Streamlit to render the audio player st.markdown(md, unsafe_allow_html=True) def image_to_base64(image: Image) -> str: """ Convert an image object from PIL to a base64-encoded image, and return the resulting encoded image as a string to be used in place of a URL. """ # Convert the image to RGB mode if necessary if image.mode != "RGB": image = image.convert("RGB") # Save the image to a BytesIO object buffered_image = BytesIO() image.save(buffered_image, format="JPEG") # Convert BytesIO to bytes and encode to base64 img_str = base64.b64encode(buffered_image.getvalue()) # Convert bytes to string base64_image = img_str.decode("utf-8") return f"data:image/jpeg;base64,{base64_image}" def shorten_image(image: Image, max_pixels: int=1024) -> Image: """ Take an Image object as input, and shorten the image size if the image is greater than max_pixels x max_pixels. """ if max(image.width, image.height) > max_pixels: if image.width > image.height: new_width, new_height = 1024, image.height * 1024 // image.width else: new_width, new_height = image.width * 1024 // image.height, 1024 image = image.resize((new_width, new_height)) return image def upload_image_files_return_urls( type: List[str]=["jpg", "jpeg", "png", "bmp"] ) -> List[str]: """ Upload image files, convert them to base64-encoded images, and return the list of the resulting encoded images to be used in place of URLs. """ st.write("") st.write("**Query Image(s)**") source = st.radio( label="Image selection", options=("Uploaded", "From URL"), horizontal=True, label_visibility="collapsed", ) image_urls = [] if source == "Uploaded": uploaded_files = st.file_uploader( label="Upload images", type=type, accept_multiple_files=True, label_visibility="collapsed", key="image_upload_" + str(st.session_state.uploader_key), ) if uploaded_files: try: for image_file in uploaded_files: image = Image.open(image_file) thumbnail = shorten_image(image, 300) st.image(thumbnail) image = shorten_image(image, 1024) image_urls.append(image_to_base64(image)) except UnidentifiedImageError as e: st.error(f"An error occurred: {e}", icon="🚨") else: image_url = st.text_input( label="URL of the image", label_visibility="collapsed", key="image_url_" + str(st.session_state.uploader_key), ) if image_url: if is_url(image_url): st.image(image_url) image_urls = [image_url] else: st.error("Enter a proper URL", icon="🚨") return image_urls def fig_to_base64(fig: Figure) -> str: """ Convert a Figure object to a base64-encoded image, and return the resulting encoded image to be used in place of a URL. """ with BytesIO() as buffer: fig.savefig(buffer, format="JPEG") buffer.seek(0) image = Image.open(buffer) return image_to_base64(image) def is_url(text: str) -> bool: """ Determine whether text is a URL or not. """ regex = r"(http|https)://([\w_-]+(?:\.[\w_-]+)+)(:\S*)?" p = re.compile(regex) match = p.match(text) if match: return True else: return False def reset_conversation() -> None: """ Reset the session_state variables for resetting the conversation. """ st.session_state.history = [] st.session_state.ai_role[1] = st.session_state.ai_role[0] st.session_state.prompt_exists = False st.session_state.temperature[1] = st.session_state.temperature[0] st.session_state.audio_response = None st.session_state.vector_store_message = None st.session_state.tool_names[1] = st.session_state.tool_names[0] st.session_state.agent_type[1] = st.session_state.agent_type[0] st.session_state.retriever_tool = None st.session_state.uploader_key = 0 def switch_between_apps() -> None: """ Keep the chat settings when switching the mode. """ st.session_state.temperature[1] = st.session_state.temperature[0] st.session_state.ai_role[1] = st.session_state.ai_role[0] st.session_state.tool_names[1] = st.session_state.tool_names[0] st.session_state.agent_type[1] = st.session_state.agent_type[0] @tool def python_repl( code: Annotated[str, "The python code to execute to generate your chart."], ): """Use this to execute python code. If you want to see the output of a value, you should print it out with `print(...)`. This is visible to the user.""" try: result = PythonREPL().run(code) except BaseException as e: return f"Failed to execute. Error: {repr(e)}" result_str = f"Successfully executed:\n```python\n{code}\n```\nStdout: {result}" return ( result_str + "\n\nIf you have completed all tasks, respond with FINAL ANSWER." ) def set_tools() -> List[Tool]: """ Set and return the tools for the agent. Tools that can be selected are internet_search, arxiv, wikipedia, python_repl, and retrieval. A Bing Subscription Key or Google CSE ID is required for internet_search. """ class MySearchToolInput(BaseModel): query: str = Field(description="search query to look up") arxiv = load_tools(["arxiv"])[0] wikipedia = load_tools(["wikipedia"])[0] # python_repl = PythonREPLTool() tool_options = ["ArXiv", "Wikipedia", "Python_REPL", "Retrieval"] tool_dictionary = { "ArXiv": arxiv, "Wikipedia": wikipedia, "Python_REPL": python_repl, "Retrieval": st.session_state.retriever_tool } if st.session_state.bing_subscription_validity: search = BingSearchAPIWrapper() elif st.session_state.google_cse_id_validity: search = GoogleSearchAPIWrapper() else: search = None if search is not None: internet_search = Tool( name="internet_search", description=( "A search engine for comprehensive, accurate, and trusted results. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ), func=partial(search.results, num_results=5), args_schema=MySearchToolInput, ) tool_options.insert(0, "Search") tool_dictionary["Search"] = internet_search st.write("") st.write("**Tools**") tool_names = st.multiselect( label="assistant tools", options=tool_options, default=st.session_state.tool_names[1], label_visibility="collapsed", ) if "Search" not in tool_options: st.write( "Tools are disabled when images are uploaded and " "queried. To search the internet, obtain your Bing Subscription " "Key [here](https://portal.azure.com/) or Google CSE ID " "[here](https://programmablesearchengine.google.com/about/), " "and enter it in the sidebar. Once entered, 'Search' will be " "displayed in the list of tools. Note also that PythonREPL from " "LangChain is still in the experimental phase, so caution is " "advised.", unsafe_allow_html=True, ) else: st.write( "Tools are disabled when images are uploaded and " "queried. Note also that PythonREPL from LangChain is still " "in the experimental phase, so caution is advised.", unsafe_allow_html=True, ) if "Retrieval" in tool_names: # Get the retriever tool and save it to st.session_state.retriever_tool. get_retriever() if st.session_state.vector_store_message: st.write(st.session_state.vector_store_message) tools = [ tool_dictionary[key] for key in tool_names if tool_dictionary[key] is not None ] st.session_state.tool_names[0] = tool_names return tools def set_prompts(agent_type: Literal["Tool Calling", "ReAct"]) -> None: """ Set chat and agent prompts for two different types of agents: Tool Calling and ReAct. """ if agent_type == "Tool Calling": st.session_state.chat_prompt = ChatPromptTemplate.from_messages([ ( "system", f"{st.session_state.ai_role[0]} Your goal is to provide " "answers to human inquiries. Should the information not " "be available, inform the human explicitly that " "the answer could not be found." ), MessagesPlaceholder(variable_name="chat_history"), ("human", "{input}"), ]) st.session_state.agent_prompt = ChatPromptTemplate.from_messages([ ( "system", f"{st.session_state.ai_role[0]} Your goal is to provide " "answers to human inquiries. You should specify the source " "of your answers, whether they are based on internet search " "results ('internet_search'), scientific articles from " "arxiv.org ('arxiv'), Wikipedia documents ('wikipedia'), " "uploaded documents ('retriever'), or your general knowledge. " "Use Markdown syntax and include relevant sources, such as " "links (URLs), following MLA format. Should the information " "not be available through internet searches, scientific " "articles, Wikipedia documents, uploaded documents, or your " "general knowledge, inform the human explicitly that the " "answer could not be found. Also, if you use 'python_repl' " "for computation, show the Python code that you run." ), MessagesPlaceholder(variable_name="chat_history", optional=True), ("human", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ]) else: st.session_state.chat_prompt = ChatPromptTemplate.from_template( f"{st.session_state.ai_role[0]} " "Your goal is to provide answers to human inquiries. " "Should the information not be available, inform the human " "explicitly that the answer could not be found.\n\n" "{chat_history}\n\nHuman: {input}\n\n" "AI: " ) st.session_state.agent_prompt = ChatPromptTemplate.from_template( f"{st.session_state.ai_role[0]} " "Your goal is to provide answers to human inquiries. " "When giving your answers, tell the human what your response " "is based on and which tools you use. Use Markdown syntax " "and include relevant sources, such as links (URLs), following " "MLA format. Should the information not be available, inform " "the human explicitly that the answer could not be found.\n\n" "TOOLS:\n" "------\n\n" "You have access to the following tools:\n\n" "{tools}\n\n" "To use a tool, please use the following format:\n\n" "Thought: Do I need to use a tool? Yes\n" "Action: the action to take, should be one of [{tool_names}]\n" "Action Input: the input to the action\n" "Observation: the result of the action\n\n" "When you have a response to say to the Human, " "or if you do not need to use a tool, you MUST use " "the format:\n\n" "Thought: Do I need to use a tool? No\n" "Final Answer: [your response here]\n\n" "Begin!\n\n" "Previous conversation history:\n\n" "{chat_history}\n\n" "New input: {input}\n" "{agent_scratchpad}" ) def print_conversation(no_of_msgs: Union[Literal["All"], int]) -> None: """ Print the conversation stored in st.session_state.history. """ if no_of_msgs == "All": no_of_msgs = len(st.session_state.history) for msg in st.session_state.history[-no_of_msgs:]: if isinstance(msg, HumanMessage): with st.chat_message("human"): st.write(msg.content) else: with st.chat_message("ai"): display_text_with_equations(msg.content) if urls := msg.additional_kwargs.get("image_urls"): for url in urls: st.image(url) # Play TTS if ( st.session_state.model_type == "GPT Models from OpenAI" and st.session_state.audio_response is not None ): play_audio(st.session_state.audio_response) st.session_state.audio_response = None def serialize_messages( messages: List[Union[HumanMessage, AIMessage]] ) -> List[Dict]: """ Serialize the list of messages into a list of dicts """ return [msg.dict() for msg in messages] def deserialize_messages( serialized_messages: List[Dict] ) -> List[Union[HumanMessage, AIMessage]]: """ Deserialize the list of messages from a list of dicts """ deserialized_messages = [] for msg in serialized_messages: if msg['type'] == 'human': deserialized_messages.append(HumanMessage(**msg)) elif msg['type'] == 'ai': deserialized_messages.append(AIMessage(**msg)) return deserialized_messages def show_uploader() -> None: """ Set the flag to show the uploader. """ st.session_state.show_uploader = True def check_conversation_keys(lst: List[Dict[str, Any]]) -> bool: """ Check if all items in the given list are valid conversation entries. """ return all( isinstance(item, dict) and isinstance(item.get("content"), str) and isinstance(item.get("type"), str) and isinstance(item.get("additional_kwargs"), dict) for item in lst ) def load_conversation() -> bool: """ Load the conversation from a JSON file """ st.write("") st.write("**Choose a (JSON) conversation file**") uploaded_file = st.file_uploader( label="Load conversation", type="json", label_visibility="collapsed" ) if uploaded_file: try: data = json.load(uploaded_file) if isinstance(data, list) and check_conversation_keys(data): st.session_state.history = deserialize_messages(data) return True st.error( f"The uploaded data does not conform to the expected format.", icon="🚨" ) except Exception as e: st.error(f"An error occurred: {e}", icon="🚨") return False def create_text(model: str) -> None: """ Take an LLM as input and generate text based on user input by calling run_agent(). """ # initial system prompts general_role = "You are a helpful AI assistant." english_teacher = ( "You are an AI English teacher who analyzes texts and corrects " "any grammatical issues if necessary." ) translator = ( "You are an AI translator who translates English into Korean " "and Korean into English." ) coding_adviser = ( "You are an AI expert in coding who provides advice on " "good coding styles." ) science_assistant = "You are an AI science assistant." roles = ( general_role, english_teacher, translator, coding_adviser, science_assistant ) with st.sidebar: st.write("") type_options = ("Tool Calling", "ReAct") st.write("**Agent Type**") st.session_state.agent_type[0] = st.sidebar.radio( label="Agent Type", options=type_options, index=type_options.index(st.session_state.agent_type[1]), label_visibility="collapsed", ) agent_type = st.session_state.agent_type[0] if st.session_state.model_type == "GPT Models from OpenAI": st.write("") st.write("**Text to Speech**") st.session_state.tts = st.radio( label="TTS", options=("Enabled", "Disabled", "Auto"), # horizontal=True, index=1, label_visibility="collapsed", ) st.write("") st.write("**Temperature**") st.session_state.temperature[0] = st.slider( label="Temperature (higher $\Rightarrow$ more random)", min_value=0.0, max_value=1.0, value=st.session_state.temperature[1], step=0.1, format="%.1f", label_visibility="collapsed", ) st.write("") st.write("**Messages to Show**") no_of_msgs = st.radio( label="$\\textsf{Messages to show}$", options=("All", 20, 10), label_visibility="collapsed", horizontal=True, index=2, ) st.write("") st.write("##### Message to AI") st.session_state.ai_role[0] = st.selectbox( label="AI's role", options=roles, index=roles.index(st.session_state.ai_role[1]), label_visibility="collapsed", ) if st.session_state.ai_role[0] != st.session_state.ai_role[1]: reset_conversation() st.rerun() st.write("") st.write("##### Conversation with AI") # Print conversation print_conversation(no_of_msgs) # Reset, download, or load the conversation c1, c2, c3 = st.columns(3) c1.button( label="$~\:\,\,$Reset$~\:\,\,$", on_click=reset_conversation ) c2.download_button( label="Download", data=json.dumps(serialize_messages(st.session_state.history), indent=4), file_name="conversation_with_agent.json", mime="application/json", ) c3.button( label="$~~\:\,$Load$~~\:\,$", on_click=show_uploader, ) if st.session_state.show_uploader and load_conversation(): st.session_state.show_uploader = False st.rerun() # Set the agent prompts and tools set_prompts(agent_type) tools = set_tools() image_urls = [] with st.sidebar: image_urls = upload_image_files_return_urls() if st.session_state.model_type == "GPT Models from OpenAI": audio_input = input_from_mic() if audio_input is not None: query = audio_input st.session_state.prompt_exists = True st.session_state.mic_used = True # Use your keyboard text_input = st.chat_input(placeholder="Enter your query") if text_input: query = text_input.strip() st.session_state.prompt_exists = True if st.session_state.prompt_exists: with st.chat_message("human"): st.write(query) with st.chat_message("ai"): generated_text = run_agent( query=query, model=model, tools=tools, image_urls=image_urls, temperature=st.session_state.temperature[0], agent_type=agent_type, ) fig = plt.gcf() if fig and fig.get_axes(): generated_image_url = fig_to_base64(fig) st.session_state.history[-1].additional_kwargs["image_urls"] = [ generated_image_url ] if ( st.session_state.model_type == "GPT Models from OpenAI" and generated_text is not None ): # TTS under two conditions cond1 = st.session_state.tts == "Enabled" cond2 = st.session_state.tts == "Auto" and st.session_state.mic_used if cond1 or cond2: st.session_state.audio_response = perform_tts(generated_text) st.session_state.mic_used = False st.session_state.prompt_exists = False if generated_text is not None: st.session_state.uploader_key += 1 st.rerun() def create_image(model: str) -> None: """ Generate image based on user description by calling openai_create_image(). """ # Set the image size with st.sidebar: st.write("") st.write("**Pixel size**") image_size = st.radio( label="$\\hspace{0.1em}\\texttt{Pixel size}$", options=("1024x1024", "1792x1024", "1024x1792"), # horizontal=True, index=0, label_visibility="collapsed", ) st.write("") st.write("##### Description for your image") if st.session_state.image_url is not None: st.info(st.session_state.image_description) st.image(image=st.session_state.image_url, use_column_width=True) # Get an image description using the microphone if st.session_state.model_type == "GPT Models from OpenAI": audio_input = input_from_mic() if audio_input is not None: st.session_state.image_description = audio_input st.session_state.prompt_exists = True # Get an image description using the keyboard text_input = st.chat_input( placeholder="Enter a description for your image", ) if text_input: st.session_state.image_description = text_input.strip() st.session_state.prompt_exists = True if st.session_state.prompt_exists: st.session_state.image_url = openai_create_image( st.session_state.image_description, model, image_size ) st.session_state.prompt_exists = False if st.session_state.image_url is not None: st.rerun() def create_text_image() -> None: """ Generate text or image by using llm models like "gpt-4o". """ page_title = "LangChain LLM Agent" page_icon = "📚" st.set_page_config( page_title=page_title, page_icon=page_icon, layout="centered" ) st.write(f"## {page_icon} $\,${page_title}") # Initialize all the session state variables initialize_session_state_variables() with st.sidebar: st.write("") st.write("**API Key Selection**") choice_api = st.sidebar.radio( label="Choice of API", options=("Your keys", "My keys"), label_visibility="collapsed", horizontal=True, ) if choice_api == "Your keys": st.write("") st.write("**Model Type**") st.session_state.model_type = st.sidebar.radio( label="Model type", options=( "GPT Models from OpenAI", "Claude Models from Anthropic", "Gemini Models from Google", ), on_change=check_api_keys, label_visibility="collapsed", ) st.write("") if st.session_state.model_type in ( "GPT Models from OpenAI", "Claude Models from Anthropic" ): validity = "(Verified)" if st.session_state.ready else "" if st.session_state.model_type == "GPT Models from OpenAI": st.write( "**OpenAI API Key** ", f":blue[{validity}]", unsafe_allow_html=True ) openai_api_key = st.text_input( label="OpenAI API Key", type="password", on_change=check_api_keys, label_visibility="collapsed", ) else: st.write( "**Anthropic API Key** ", f":blue[{validity}]", unsafe_allow_html=True ) anthropic_api_key = st.text_input( label="Anthropic API Key", type="password", on_change=check_api_keys, label_visibility="collapsed", ) if st.session_state.bing_subscription_validity: validity = "(Verified)" else: validity = "" st.write( "**Bing Subscription Key** ", f":blue[{validity}]", unsafe_allow_html=True ) bing_subscription_key = st.text_input( label="Bing Subscription Key", type="password", value="", on_change=check_api_keys, label_visibility="collapsed", ) else: validity = "(Verified)" if st.session_state.ready else "" st.write( "**Google API Key** ", f":blue[{validity}]", unsafe_allow_html=True ) google_api_key = st.text_input( label="Google API Key", type="password", on_change=check_api_keys, label_visibility="collapsed", ) if st.session_state.google_cse_id_validity: validity = "(Verified)" else: validity = "" st.write( "**Google CSE ID** ", f":blue[{validity}]", unsafe_allow_html=True ) google_cse_id = st.text_input( label="Google CSE ID", type="password", value="", on_change=check_api_keys, label_visibility="collapsed", ) authentication = True else: openai_api_key = st.secrets["OPENAI_API_KEY"] anthropic_api_key = st.secrets["ANTHROPIC_API_KEY"] bing_subscription_key = st.secrets["BING_SUBSCRIPTION_KEY"] google_api_key = st.secrets["GOOGLE_API_KEY"] google_cse_id = st.secrets["GOOGLE_CSE_ID"] langchain_api_key = st.secrets["LANGCHAIN_API_KEY"] stored_pin = st.secrets["USER_PIN"] st.write("**Password**") user_pin = st.text_input( label="Enter password", type="password", label_visibility="collapsed" ) st.session_state.model_type = "GPT Models from OpenAI" authentication = user_pin == stored_pin os.environ["BING_SEARCH_URL"] = "https://api.bing.microsoft.com/v7.0/search" if authentication: if not st.session_state.ready: if choice_api == "My keys": os.environ["OPENAI_API_KEY"] = openai_api_key os.environ["ANTHROPIC_API_KEY"] = anthropic_api_key os.environ["BING_SUBSCRIPTION_KEY"] = bing_subscription_key st.session_state.bing_subscription_validity = True st.session_state.openai = OpenAI() os.environ["GOOGLE_API_KEY"] = google_api_key os.environ["GOOGLE_CSE_ID"] = google_cse_id st.session_state.google_cse_id_validity = True st.session_state.ready = True os.environ["LANGCHAIN_API_KEY"] = langchain_api_key current_date = datetime.datetime.now().date() date_string = str(current_date) os.environ["LANGCHAIN_PROJECT"] = "llm_agent_" + date_string else: if st.session_state.model_type in ( "GPT Models from OpenAI", "Claude Models from Anthropic" ): if st.session_state.model_type == "GPT Models from OpenAI": if is_openai_api_key_valid(openai_api_key): os.environ["OPENAI_API_KEY"] = openai_api_key st.session_state.openai = OpenAI() st.session_state.ready = True else: if is_anthropic_api_key_valid(anthropic_api_key): os.environ["ANTHROPIC_API_KEY"] = anthropic_api_key st.session_state.ready = True if st.session_state.ready: if is_bing_subscription_key_valid(bing_subscription_key): os.environ["BING_SUBSCRIPTION_KEY"] = bing_subscription_key st.session_state.bing_subscription_validity = True else: st.session_state.bing_subscription_validity = False else: if is_google_api_key_valid(google_api_key): os.environ["GOOGLE_API_KEY"] = google_api_key st.session_state.ready = True if are_google_api_key_cse_id_valid( google_api_key, google_cse_id ): os.environ["GOOGLE_CSE_ID"] = google_cse_id st.session_state.google_cse_id_validity = True else: st.session_state.google_cse_id_validity = False if st.session_state.ready: st.rerun() else: #st.image("files/Streamlit_Agent_App.png") st.info( """ This app is based on [T.-W. Yoon's work](https://github.com/twy80/LangChain_llm_Agent/tree/main) """ ) st.stop() else: st.info("**Enter the correct password in the sidebar**") st.stop() gpt_models = ("gpt-4o-mini", "gpt-4o") claude_models = ("claude-3-5-haiku-latest", "claude-3-5-sonnet-latest") gemini_models = ("gemini-1.5-flash", "gemini-1.5-pro") with st.sidebar: if choice_api == "My keys": st.write("") st.write("**LangSmith Tracing**") langsmith = st.radio( label="LangSmith Tracing", options=("On", "Off"), label_visibility="collapsed", index=1, horizontal=True ) os.environ["LANGCHAIN_TRACING_V2"] = ( "true" if langsmith == "On" else "false" ) st.write("") st.write("**Model**") if choice_api == "My keys": model_options = gpt_models + claude_models + gemini_models model_options += ("dall-e-3",) else: if st.session_state.model_type == "GPT Models from OpenAI": model_options = gpt_models + ("dall-e-3",) elif st.session_state.model_type == "Claude Models from Anthropic": model_options = claude_models else: model_options = gemini_models model = st.radio( label="Models", options=model_options, label_visibility="collapsed", index=1, on_change=switch_between_apps, ) if model == "dall-e-3": create_image(model) else: create_text(model) with st.sidebar: st.write("---") st.write( "test" ) if __name__ == "__main__": create_text_image()