Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Update interim/app.py
Browse files- interim/app.py +70 -57
interim/app.py
CHANGED
@@ -56,6 +56,9 @@ def check_poppler_installed():
|
|
56 |
check_poppler_installed()
|
57 |
|
58 |
def load_docs(document_path):
|
|
|
|
|
|
|
59 |
try:
|
60 |
import fitz # PyMuPDF for text extraction
|
61 |
|
@@ -71,11 +74,11 @@ def load_docs(document_path):
|
|
71 |
|
72 |
doc.close()
|
73 |
|
74 |
-
#
|
75 |
full_text = "\n".join(extracted_text)
|
76 |
st.write(f"📄 Total Cleaned Text Length: {len(full_text)} characters")
|
77 |
|
78 |
-
# Step
|
79 |
text_splitter = RecursiveCharacterTextSplitter(
|
80 |
chunk_size=1000,
|
81 |
chunk_overlap=100,
|
@@ -83,9 +86,9 @@ def load_docs(document_path):
|
|
83 |
)
|
84 |
split_docs = text_splitter.create_documents([full_text])
|
85 |
|
86 |
-
# Debug: Show
|
87 |
st.write(f"🔍 Total Chunks After Splitting: {len(split_docs)}")
|
88 |
-
for i, doc in enumerate(split_docs[:
|
89 |
st.write(f"Chunk {i + 1}: {doc.page_content[:300]}...")
|
90 |
|
91 |
return split_docs
|
@@ -126,30 +129,28 @@ def already_indexed(vectordb, file_name):
|
|
126 |
return file_name in indexed_sources
|
127 |
|
128 |
def load_chain(file_name=None):
|
|
|
|
|
|
|
129 |
loaded_patent = st.session_state.get("LOADED_PATENT")
|
130 |
|
131 |
-
# Debug:
|
132 |
-
st.write(f"Using Persisted Directory: {PERSISTED_DIRECTORY}")
|
|
|
133 |
vectordb = Chroma(
|
134 |
persist_directory=PERSISTED_DIRECTORY,
|
135 |
embedding_function=HuggingFaceEmbeddings(),
|
136 |
)
|
137 |
|
138 |
-
# Debug: Confirm already indexed
|
139 |
if loaded_patent == file_name or already_indexed(vectordb, file_name):
|
140 |
st.write("✅ Already indexed.")
|
141 |
else:
|
142 |
st.write("🔄 Starting document processing and vectorstore update...")
|
143 |
-
|
144 |
# Remove existing collection and load new docs
|
145 |
vectordb.delete_collection()
|
146 |
docs = load_docs(file_name)
|
147 |
|
148 |
-
# Debug: Verify text chunking
|
149 |
-
st.write(f"🔍 Number of Documents Loaded: {len(docs)}")
|
150 |
-
for i, doc in enumerate(docs[:5]): # Show first 5 chunks for debugging
|
151 |
-
st.write(f"Chunk {i + 1}: {doc.page_content[:200]}...")
|
152 |
-
|
153 |
# Update vectorstore
|
154 |
vectordb = Chroma.from_documents(
|
155 |
docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
|
@@ -160,18 +161,15 @@ def load_chain(file_name=None):
|
|
160 |
# Save loaded patent in session state
|
161 |
st.session_state["LOADED_PATENT"] = file_name
|
162 |
|
163 |
-
# Debug: Check vectorstore indexing
|
164 |
indexed_docs = vectordb.get(include=["documents"])
|
165 |
-
st.write(f"✅ Indexed Documents
|
166 |
-
for i, doc in enumerate(indexed_docs["documents"][:3]): # Show first 3 indexed docs
|
167 |
-
st.write(f"Indexed Doc {i + 1}: {doc[:200]}...")
|
168 |
|
169 |
-
# Test retrieval with a
|
170 |
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
171 |
test_query = "What is this document about?"
|
172 |
results = retriever.get_relevant_documents(test_query)
|
173 |
|
174 |
-
# Debug: Verify document retrieval
|
175 |
st.write("🔍 Test Retrieval Results for Query:")
|
176 |
if results:
|
177 |
for i, res in enumerate(results):
|
@@ -182,18 +180,16 @@ def load_chain(file_name=None):
|
|
182 |
# Configure memory for conversation
|
183 |
memory = ConversationBufferMemory(
|
184 |
memory_key="chat_history",
|
185 |
-
return_messages=True
|
186 |
-
input_key="question",
|
187 |
-
output_key="answer",
|
188 |
)
|
189 |
|
190 |
return ConversationalRetrievalChain.from_llm(
|
191 |
OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
|
192 |
retriever,
|
193 |
-
|
194 |
-
memory=memory,
|
195 |
)
|
196 |
|
|
|
197 |
def extract_patent_number(url):
|
198 |
pattern = r"/patent/([A-Z]{2}\d+)"
|
199 |
match = re.search(pattern, url)
|
@@ -208,19 +204,36 @@ def download_pdf(patent_number):
|
|
208 |
st.error(f"Failed to download patent PDF: {e}")
|
209 |
st.stop()
|
210 |
|
211 |
-
def preview_pdf(pdf_path):
|
212 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
try:
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
temp_image_path = os.path.join(tempfile.gettempdir(), "pdf_preview.png")
|
218 |
-
pix.save(temp_image_path)
|
|
|
|
|
219 |
return temp_image_path
|
|
|
220 |
except Exception as e:
|
221 |
st.error(f"Error generating PDF preview: {e}")
|
222 |
return None
|
223 |
|
|
|
224 |
if __name__ == "__main__":
|
225 |
st.set_page_config(
|
226 |
page_title="Patent Chat: Google Patents Chat Demo",
|
@@ -234,7 +247,7 @@ if __name__ == "__main__":
|
|
234 |
patent_link = st.text_area(
|
235 |
"Enter Google Patent Link:",
|
236 |
value="https://patents.google.com/patent/US8676427B1/en",
|
237 |
-
height=
|
238 |
)
|
239 |
|
240 |
# Initialize session state
|
@@ -259,39 +272,39 @@ if __name__ == "__main__":
|
|
259 |
# File handling
|
260 |
pdf_path = os.path.join(tempfile.gettempdir(), f"{patent_number}.pdf")
|
261 |
if not os.path.isfile(pdf_path):
|
262 |
-
st.
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
else:
|
270 |
st.write("✅ File already downloaded.")
|
271 |
|
272 |
# Generate PDF preview only if not already displayed
|
273 |
if not st.session_state.get("pdf_preview_displayed", False):
|
274 |
-
st.
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
|
284 |
# Load the document into the system
|
285 |
-
st.
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
|
296 |
# Display previous chat messages
|
297 |
if st.session_state.messages:
|
|
|
56 |
check_poppler_installed()
|
57 |
|
58 |
def load_docs(document_path):
|
59 |
+
"""
|
60 |
+
Load and clean the PDF content, then split into chunks.
|
61 |
+
"""
|
62 |
try:
|
63 |
import fitz # PyMuPDF for text extraction
|
64 |
|
|
|
74 |
|
75 |
doc.close()
|
76 |
|
77 |
+
# Combine all pages into one text
|
78 |
full_text = "\n".join(extracted_text)
|
79 |
st.write(f"📄 Total Cleaned Text Length: {len(full_text)} characters")
|
80 |
|
81 |
+
# Step 2: Chunk the cleaned text
|
82 |
text_splitter = RecursiveCharacterTextSplitter(
|
83 |
chunk_size=1000,
|
84 |
chunk_overlap=100,
|
|
|
86 |
)
|
87 |
split_docs = text_splitter.create_documents([full_text])
|
88 |
|
89 |
+
# Debug: Show total chunks count and first 3 chunks for verification
|
90 |
st.write(f"🔍 Total Chunks After Splitting: {len(split_docs)}")
|
91 |
+
for i, doc in enumerate(split_docs[:3]): # Show first 3 chunks only
|
92 |
st.write(f"Chunk {i + 1}: {doc.page_content[:300]}...")
|
93 |
|
94 |
return split_docs
|
|
|
129 |
return file_name in indexed_sources
|
130 |
|
131 |
def load_chain(file_name=None):
|
132 |
+
"""
|
133 |
+
Load cleaned PDF text, split into chunks, and update the vectorstore.
|
134 |
+
"""
|
135 |
loaded_patent = st.session_state.get("LOADED_PATENT")
|
136 |
|
137 |
+
# Debug: Show persist directory
|
138 |
+
st.write(f"🗂 Using Persisted Directory: {PERSISTED_DIRECTORY}")
|
139 |
+
|
140 |
vectordb = Chroma(
|
141 |
persist_directory=PERSISTED_DIRECTORY,
|
142 |
embedding_function=HuggingFaceEmbeddings(),
|
143 |
)
|
144 |
|
|
|
145 |
if loaded_patent == file_name or already_indexed(vectordb, file_name):
|
146 |
st.write("✅ Already indexed.")
|
147 |
else:
|
148 |
st.write("🔄 Starting document processing and vectorstore update...")
|
149 |
+
|
150 |
# Remove existing collection and load new docs
|
151 |
vectordb.delete_collection()
|
152 |
docs = load_docs(file_name)
|
153 |
|
|
|
|
|
|
|
|
|
|
|
154 |
# Update vectorstore
|
155 |
vectordb = Chroma.from_documents(
|
156 |
docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
|
|
|
161 |
# Save loaded patent in session state
|
162 |
st.session_state["LOADED_PATENT"] = file_name
|
163 |
|
164 |
+
# Debug: Check vectorstore indexing summary
|
165 |
indexed_docs = vectordb.get(include=["documents"])
|
166 |
+
st.write(f"✅ Total Indexed Documents: {len(indexed_docs['documents'])}")
|
|
|
|
|
167 |
|
168 |
+
# Test retrieval with a simple query
|
169 |
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
170 |
test_query = "What is this document about?"
|
171 |
results = retriever.get_relevant_documents(test_query)
|
172 |
|
|
|
173 |
st.write("🔍 Test Retrieval Results for Query:")
|
174 |
if results:
|
175 |
for i, res in enumerate(results):
|
|
|
180 |
# Configure memory for conversation
|
181 |
memory = ConversationBufferMemory(
|
182 |
memory_key="chat_history",
|
183 |
+
return_messages=True
|
|
|
|
|
184 |
)
|
185 |
|
186 |
return ConversationalRetrievalChain.from_llm(
|
187 |
OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
|
188 |
retriever,
|
189 |
+
memory=memory
|
|
|
190 |
)
|
191 |
|
192 |
+
|
193 |
def extract_patent_number(url):
|
194 |
pattern = r"/patent/([A-Z]{2}\d+)"
|
195 |
match = re.search(pattern, url)
|
|
|
204 |
st.error(f"Failed to download patent PDF: {e}")
|
205 |
st.stop()
|
206 |
|
207 |
+
def preview_pdf(pdf_path, scale_factor=0.5):
|
208 |
+
"""
|
209 |
+
Generate and display a resized preview of the first page of the PDF.
|
210 |
+
Args:
|
211 |
+
pdf_path (str): Path to the PDF file.
|
212 |
+
scale_factor (float): Factor to reduce the image size (default is 0.5).
|
213 |
+
Returns:
|
214 |
+
str: Path to the resized image preview.
|
215 |
+
"""
|
216 |
try:
|
217 |
+
# Open the PDF and extract the first page
|
218 |
+
doc = fitz.open(pdf_path)
|
219 |
+
first_page = doc[0]
|
220 |
+
|
221 |
+
# Apply scaling using a transformation matrix
|
222 |
+
matrix = fitz.Matrix(scale_factor, scale_factor) # Scale down the image
|
223 |
+
pix = first_page.get_pixmap(matrix=matrix) # Generate scaled image
|
224 |
+
|
225 |
+
# Save the preview image
|
226 |
temp_image_path = os.path.join(tempfile.gettempdir(), "pdf_preview.png")
|
227 |
+
pix.save(temp_image_path)
|
228 |
+
|
229 |
+
doc.close()
|
230 |
return temp_image_path
|
231 |
+
|
232 |
except Exception as e:
|
233 |
st.error(f"Error generating PDF preview: {e}")
|
234 |
return None
|
235 |
|
236 |
+
|
237 |
if __name__ == "__main__":
|
238 |
st.set_page_config(
|
239 |
page_title="Patent Chat: Google Patents Chat Demo",
|
|
|
247 |
patent_link = st.text_area(
|
248 |
"Enter Google Patent Link:",
|
249 |
value="https://patents.google.com/patent/US8676427B1/en",
|
250 |
+
height=90
|
251 |
)
|
252 |
|
253 |
# Initialize session state
|
|
|
272 |
# File handling
|
273 |
pdf_path = os.path.join(tempfile.gettempdir(), f"{patent_number}.pdf")
|
274 |
if not os.path.isfile(pdf_path):
|
275 |
+
with st.spinner("📥 Downloading patent file..."):
|
276 |
+
try:
|
277 |
+
pdf_path = download_pdf(patent_number)
|
278 |
+
st.write(f"✅ File downloaded: {pdf_path}")
|
279 |
+
except Exception as e:
|
280 |
+
st.error(f"Failed to download patent: {e}")
|
281 |
+
st.stop()
|
282 |
else:
|
283 |
st.write("✅ File already downloaded.")
|
284 |
|
285 |
# Generate PDF preview only if not already displayed
|
286 |
if not st.session_state.get("pdf_preview_displayed", False):
|
287 |
+
with st.spinner("🖼️ Generating PDF preview..."):
|
288 |
+
preview_image_path = preview_pdf(pdf_path, scale_factor=0.5)
|
289 |
+
if preview_image_path:
|
290 |
+
st.session_state.pdf_preview = preview_image_path
|
291 |
+
st.image(preview_image_path, caption="First Page Preview", use_container_width=False)
|
292 |
+
st.session_state["pdf_preview_displayed"] = True
|
293 |
+
else:
|
294 |
+
st.warning("Failed to generate PDF preview.")
|
295 |
+
st.session_state.pdf_preview = None
|
296 |
|
297 |
# Load the document into the system
|
298 |
+
with st.spinner("🔄 Loading document into the system..."):
|
299 |
+
try:
|
300 |
+
st.session_state.chain = load_chain(pdf_path)
|
301 |
+
st.session_state.LOADED_PATENT = patent_number
|
302 |
+
st.session_state.loaded_pdf_path = pdf_path
|
303 |
+
st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]
|
304 |
+
st.success("🚀 Document successfully loaded! You can now start asking questions.")
|
305 |
+
except Exception as e:
|
306 |
+
st.error(f"Failed to load the document: {e}")
|
307 |
+
st.stop()
|
308 |
|
309 |
# Display previous chat messages
|
310 |
if st.session_state.messages:
|