Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -36,6 +36,8 @@ from langchain.vectorstores import Chroma
|
|
36 |
from langchain.embeddings import HuggingFaceEmbeddings
|
37 |
from langchain.text_splitter import NLTKTextSplitter
|
38 |
from patent_downloader import PatentDownloader
|
|
|
|
|
39 |
|
40 |
PERSISTED_DIRECTORY = tempfile.mkdtemp()
|
41 |
|
@@ -55,41 +57,30 @@ check_poppler_installed()
|
|
55 |
|
56 |
def load_docs(document_path):
|
57 |
try:
|
58 |
-
|
59 |
-
|
60 |
-
mode="elements",
|
61 |
-
strategy="fast",
|
62 |
-
ocr_languages=None
|
63 |
-
)
|
64 |
documents = loader.load()
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# Debugging: Show filtered chunks
|
88 |
-
st.write(f"🔍 Filtered Documents: {len(filtered_docs)}")
|
89 |
-
for i, doc in enumerate(filtered_docs[:5]): # Show first 5 chunks
|
90 |
-
st.write(f"Filtered Chunk {i + 1}: {doc.page_content[:200]}...")
|
91 |
-
|
92 |
-
return filtered_docs
|
93 |
except Exception as e:
|
94 |
st.error(f"Failed to load and process PDF: {e}")
|
95 |
st.stop()
|
|
|
36 |
from langchain.embeddings import HuggingFaceEmbeddings
|
37 |
from langchain.text_splitter import NLTKTextSplitter
|
38 |
from patent_downloader import PatentDownloader
|
39 |
+
from langchain.document_loaders import PyMuPDFLoader
|
40 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
41 |
|
42 |
PERSISTED_DIRECTORY = tempfile.mkdtemp()
|
43 |
|
|
|
57 |
|
58 |
def load_docs(document_path):
|
59 |
try:
|
60 |
+
# Load the entire PDF content
|
61 |
+
loader = PyMuPDFLoader(document_path)
|
|
|
|
|
|
|
|
|
62 |
documents = loader.load()
|
63 |
+
|
64 |
+
# Combine all pages into a single string
|
65 |
+
full_text = "\n".join([doc.page_content for doc in documents])
|
66 |
+
|
67 |
+
# Debug: Verify total text size
|
68 |
+
st.write(f"📄 Total Text Length: {len(full_text)} characters")
|
69 |
+
|
70 |
+
# Split the text into meaningful chunks
|
71 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
72 |
+
chunk_size=1000,
|
73 |
+
chunk_overlap=100,
|
74 |
+
separators=["\n\n", "\n", " ", ""]
|
75 |
+
)
|
76 |
+
split_docs = text_splitter.create_documents([full_text])
|
77 |
+
|
78 |
+
# Debug: Show filtered chunks
|
79 |
+
st.write(f"🔍 Total Chunks After Splitting: {len(split_docs)}")
|
80 |
+
for i, doc in enumerate(split_docs[:5]): # Show first 5 chunks
|
81 |
+
st.write(f"Chunk {i + 1}: {doc.page_content[:200]}...")
|
82 |
+
|
83 |
+
return split_docs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
except Exception as e:
|
85 |
st.error(f"Failed to load and process PDF: {e}")
|
86 |
st.stop()
|