|
import streamlit as st |
|
import pandas as pd |
|
import sqlite3 |
|
import os |
|
import json |
|
from pathlib import Path |
|
from datetime import datetime, timezone |
|
from crewai import Agent, Crew, Process, Task |
|
from crewai_tools import tool |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_groq import ChatGroq |
|
from langchain.schema.output import LLMResult |
|
from langchain_core.callbacks.base import BaseCallbackHandler |
|
from langchain_community.tools.sql_database.tool import ( |
|
InfoSQLDatabaseTool, |
|
ListSQLDatabaseTool, |
|
QuerySQLCheckerTool, |
|
QuerySQLDataBaseTool, |
|
) |
|
from langchain_community.utilities.sql_database import SQLDatabase |
|
import tempfile |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") |
|
|
|
|
|
class Event: |
|
def __init__(self, event, text): |
|
self.event = event |
|
self.timestamp = datetime.now(timezone.utc).isoformat() |
|
self.text = text |
|
|
|
class LLMCallbackHandler(BaseCallbackHandler): |
|
def __init__(self, log_path: Path): |
|
self.log_path = log_path |
|
|
|
def on_llm_start(self, serialized, prompts, **kwargs): |
|
with self.log_path.open("a", encoding="utf-8") as file: |
|
file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") |
|
|
|
def on_llm_end(self, response: LLMResult, **kwargs): |
|
generation = response.generations[-1][-1].message.content |
|
with self.log_path.open("a", encoding="utf-8") as file: |
|
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") |
|
|
|
|
|
llm = ChatGroq( |
|
temperature=0, |
|
model_name="mixtral-8x7b-32768", |
|
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], |
|
) |
|
|
|
|
|
st.title("SQL-RAG with CrewAI π") |
|
st.write("Provide your query, and the app will extract, analyze, and summarize the data dynamically.") |
|
|
|
|
|
uploaded_file = st.file_uploader("Upload your dataset (CSV file)", type=["csv"]) |
|
|
|
if uploaded_file: |
|
st.success("File uploaded successfully!") |
|
|
|
|
|
temp_dir = tempfile.TemporaryDirectory() |
|
db_path = os.path.join(temp_dir.name, "data.db") |
|
|
|
|
|
df = pd.read_csv(uploaded_file) |
|
connection = sqlite3.connect(db_path) |
|
df.to_sql("data_table", connection, if_exists="replace", index=False) |
|
|
|
db = SQLDatabase.from_uri(f"sqlite:///{db_path}") |
|
|
|
|
|
@tool("list_tables") |
|
def list_tables() -> str: |
|
return ListSQLDatabaseTool(db=db).invoke("") |
|
|
|
@tool("tables_schema") |
|
def tables_schema(tables: str) -> str: |
|
return InfoSQLDatabaseTool(db=db).invoke(tables) |
|
|
|
@tool("execute_sql") |
|
def execute_sql(sql_query: str) -> str: |
|
return QuerySQLDataBaseTool(db=db).invoke(sql_query) |
|
|
|
@tool("check_sql") |
|
def check_sql(sql_query: str) -> str: |
|
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) |
|
|
|
|
|
sql_dev = Agent( |
|
role="Senior Database Developer", |
|
goal="Extract data from the database based on user query", |
|
llm=llm, |
|
tools=[list_tables, tables_schema, execute_sql, check_sql], |
|
allow_delegation=False, |
|
) |
|
|
|
data_analyst = Agent( |
|
role="Senior Data Analyst", |
|
goal="Analyze the database response and provide insights", |
|
llm=llm, |
|
allow_delegation=False, |
|
) |
|
|
|
report_writer = Agent( |
|
role="Senior Report Editor", |
|
goal="Summarize the analysis into a short report", |
|
llm=llm, |
|
allow_delegation=False, |
|
) |
|
|
|
|
|
extract_data = Task( |
|
description="Extract data required for the query: {query}.", |
|
expected_output="Database result for the query", |
|
agent=sql_dev, |
|
) |
|
|
|
analyze_data = Task( |
|
description="Analyze the data and generate insights for: {query}.", |
|
expected_output="Detailed analysis text", |
|
agent=data_analyst, |
|
context=[extract_data], |
|
) |
|
|
|
write_report = Task( |
|
description="Summarize the analysis into a concise executive report.", |
|
expected_output="Markdown report", |
|
agent=report_writer, |
|
context=[analyze_data], |
|
) |
|
|
|
|
|
crew = Crew( |
|
agents=[sql_dev, data_analyst, report_writer], |
|
tasks=[extract_data, analyze_data, write_report], |
|
process=Process.sequential, |
|
verbose=2, |
|
memory=False, |
|
) |
|
|
|
|
|
query = st.text_input("Enter your query:") |
|
if query: |
|
with st.spinner("Processing your query..."): |
|
inputs = {"query": query} |
|
result = crew.kickoff(inputs=inputs) |
|
st.markdown("### Analysis Report:") |
|
st.markdown(result) |
|
|
|
|
|
temp_dir.cleanup() |