Update dummy_funcs.py
Browse files- dummy_funcs.py +137 -0
dummy_funcs.py
CHANGED
@@ -214,3 +214,140 @@ def handle_visualization_suggestions(suggestions, df):
|
|
214 |
# Display all generated visualizations
|
215 |
for fig in visualizations:
|
216 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
# Display all generated visualizations
|
215 |
for fig in visualizations:
|
216 |
st.plotly_chart(fig, use_container_width=True)
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
-----------------
|
223 |
+
|
224 |
+
def ask_gpt4o_for_visualization(query, df, llm, retries=2):
|
225 |
+
import json
|
226 |
+
|
227 |
+
# Identify numeric and categorical columns
|
228 |
+
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
229 |
+
categorical_columns = df.select_dtypes(exclude='number').columns.tolist()
|
230 |
+
|
231 |
+
# Enhanced Prompt with More Examples
|
232 |
+
prompt = f"""
|
233 |
+
Analyze the following query and suggest the most suitable visualization(s) using the dataset.
|
234 |
+
|
235 |
+
**Query:** "{query}"
|
236 |
+
|
237 |
+
**Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'}
|
238 |
+
**Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'}
|
239 |
+
|
240 |
+
Suggest visualizations in this exact JSON format:
|
241 |
+
[
|
242 |
+
{{
|
243 |
+
"chart_type": "bar/box/line/scatter/pie/heatmap",
|
244 |
+
"x_axis": "categorical_or_time_column",
|
245 |
+
"y_axis": "numeric_column",
|
246 |
+
"group_by": "optional_column_for_grouping",
|
247 |
+
"title": "Title of the chart",
|
248 |
+
"description": "Why this chart is suitable"
|
249 |
+
}}
|
250 |
+
]
|
251 |
+
|
252 |
+
**Examples:**
|
253 |
+
- For salary distribution:
|
254 |
+
{{
|
255 |
+
"chart_type": "box",
|
256 |
+
"x_axis": "job_title",
|
257 |
+
"y_axis": "salary_in_usd",
|
258 |
+
"group_by": "experience_level",
|
259 |
+
"title": "Salary Distribution by Job Title and Experience",
|
260 |
+
"description": "A box plot showing salary ranges across job titles and experience levels."
|
261 |
+
}}
|
262 |
+
|
263 |
+
- For company size comparison:
|
264 |
+
{{
|
265 |
+
"chart_type": "bar",
|
266 |
+
"x_axis": "company_size",
|
267 |
+
"y_axis": "salary_in_usd",
|
268 |
+
"group_by": null,
|
269 |
+
"title": "Average Salary by Company Size",
|
270 |
+
"description": "A bar chart comparing the average salaries across different company sizes."
|
271 |
+
}}
|
272 |
+
|
273 |
+
- For revenue trends over time:
|
274 |
+
{{
|
275 |
+
"chart_type": "line",
|
276 |
+
"x_axis": "year",
|
277 |
+
"y_axis": "revenue",
|
278 |
+
"group_by": null,
|
279 |
+
"title": "Revenue Growth Over Years",
|
280 |
+
"description": "A line chart showing the trend of revenue over the years."
|
281 |
+
}}
|
282 |
+
|
283 |
+
- For market share breakdown:
|
284 |
+
{{
|
285 |
+
"chart_type": "pie",
|
286 |
+
"x_axis": "market_segment",
|
287 |
+
"y_axis": null,
|
288 |
+
"group_by": null,
|
289 |
+
"title": "Market Share by Segment",
|
290 |
+
"description": "A pie chart showing the distribution of market share across various segments."
|
291 |
+
}}
|
292 |
+
|
293 |
+
- For correlation analysis:
|
294 |
+
{{
|
295 |
+
"chart_type": "scatter",
|
296 |
+
"x_axis": "years_of_experience",
|
297 |
+
"y_axis": "salary_in_usd",
|
298 |
+
"group_by": "job_title",
|
299 |
+
"title": "Experience vs Salary by Job Title",
|
300 |
+
"description": "A scatter plot showing the relationship between years of experience and salary across job titles."
|
301 |
+
}}
|
302 |
+
|
303 |
+
- For data density:
|
304 |
+
{{
|
305 |
+
"chart_type": "heatmap",
|
306 |
+
"x_axis": "department",
|
307 |
+
"y_axis": "region",
|
308 |
+
"group_by": null,
|
309 |
+
"title": "Employee Distribution by Department and Region",
|
310 |
+
"description": "A heatmap showing the concentration of employees across departments and regions."
|
311 |
+
}}
|
312 |
+
|
313 |
+
Only suggest visualizations that make sense for the data and the query.
|
314 |
+
"""
|
315 |
+
|
316 |
+
for attempt in range(retries + 1):
|
317 |
+
try:
|
318 |
+
# Generate response from the model
|
319 |
+
response = llm.generate(prompt)
|
320 |
+
|
321 |
+
# Load JSON response
|
322 |
+
suggestions = json.loads(response)
|
323 |
+
|
324 |
+
# Validate response structure
|
325 |
+
if isinstance(suggestions, list):
|
326 |
+
valid_suggestions = [
|
327 |
+
s for s in suggestions if all(k in s for k in ["chart_type", "x_axis", "y_axis"])
|
328 |
+
]
|
329 |
+
if valid_suggestions:
|
330 |
+
return valid_suggestions
|
331 |
+
else:
|
332 |
+
st.warning("โ ๏ธ GPT-4o did not suggest valid visualizations.")
|
333 |
+
return None
|
334 |
+
|
335 |
+
elif isinstance(suggestions, dict):
|
336 |
+
if all(k in suggestions for k in ["chart_type", "x_axis", "y_axis"]):
|
337 |
+
return [suggestions]
|
338 |
+
else:
|
339 |
+
st.warning("โ ๏ธ GPT-4o's suggestion is incomplete.")
|
340 |
+
return None
|
341 |
+
|
342 |
+
except json.JSONDecodeError:
|
343 |
+
st.warning(f"โ ๏ธ Attempt {attempt + 1}: GPT-4o returned invalid JSON.")
|
344 |
+
except Exception as e:
|
345 |
+
st.error(f"โ ๏ธ Error during GPT-4o call: {e}")
|
346 |
+
|
347 |
+
# Retry if necessary
|
348 |
+
if attempt < retries:
|
349 |
+
st.info("๐ Retrying visualization suggestion...")
|
350 |
+
|
351 |
+
st.error("โ Failed to generate a valid visualization after multiple attempts.")
|
352 |
+
return None
|
353 |
+
|