Spaces:
Sleeping
Sleeping
Update interim.py
Browse files- interim.py +34 -17
interim.py
CHANGED
@@ -20,9 +20,10 @@ from langchain_community.utilities.sql_database import SQLDatabase
|
|
20 |
from datasets import load_dataset
|
21 |
import tempfile
|
22 |
|
|
|
23 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
24 |
|
25 |
-
# LLM
|
26 |
class LLMCallbackHandler(BaseCallbackHandler):
|
27 |
def __init__(self, log_path: Path):
|
28 |
self.log_path = log_path
|
@@ -36,6 +37,7 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
|
36 |
with self.log_path.open("a", encoding="utf-8") as file:
|
37 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
38 |
|
|
|
39 |
llm = ChatGroq(
|
40 |
temperature=0,
|
41 |
model_name="mixtral-8x7b-32768",
|
@@ -45,7 +47,7 @@ llm = ChatGroq(
|
|
45 |
st.title("SQL-RAG Using CrewAI π")
|
46 |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
47 |
|
48 |
-
#
|
49 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
50 |
df = None
|
51 |
|
@@ -67,7 +69,7 @@ else:
|
|
67 |
st.success("File uploaded successfully!")
|
68 |
st.dataframe(df.head())
|
69 |
|
70 |
-
# SQL-RAG
|
71 |
if df is not None:
|
72 |
temp_dir = tempfile.TemporaryDirectory()
|
73 |
db_path = os.path.join(temp_dir.name, "data.db")
|
@@ -75,45 +77,60 @@ if df is not None:
|
|
75 |
df.to_sql("salaries", connection, if_exists="replace", index=False)
|
76 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
77 |
|
|
|
78 |
@tool("list_tables")
|
79 |
def list_tables() -> str:
|
80 |
-
"""List all tables in the database."""
|
81 |
return ListSQLDatabaseTool(db=db).invoke("")
|
82 |
|
83 |
@tool("tables_schema")
|
84 |
def tables_schema(tables: str) -> str:
|
85 |
-
"""
|
|
|
|
|
|
|
|
|
86 |
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
87 |
|
88 |
@tool("execute_sql")
|
89 |
def execute_sql(sql_query: str) -> str:
|
90 |
-
"""
|
|
|
|
|
|
|
|
|
91 |
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
92 |
|
93 |
@tool("check_sql")
|
94 |
def check_sql(sql_query: str) -> str:
|
95 |
-
"""
|
|
|
|
|
|
|
|
|
96 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
97 |
|
|
|
98 |
sql_dev = Agent(
|
99 |
-
role="
|
100 |
-
goal="
|
101 |
llm=llm,
|
102 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
103 |
)
|
104 |
|
105 |
data_analyst = Agent(
|
106 |
-
role="
|
107 |
-
goal="Analyze the data
|
108 |
llm=llm,
|
109 |
)
|
110 |
|
111 |
report_writer = Agent(
|
112 |
-
role="
|
113 |
-
goal="Summarize the analysis into
|
114 |
llm=llm,
|
115 |
)
|
116 |
|
|
|
117 |
extract_data = Task(
|
118 |
description="Extract data for the query: {query}.",
|
119 |
expected_output="Database query results.",
|
@@ -122,14 +139,14 @@ if df is not None:
|
|
122 |
|
123 |
analyze_data = Task(
|
124 |
description="Analyze the query results for: {query}.",
|
125 |
-
expected_output="
|
126 |
agent=data_analyst,
|
127 |
context=[extract_data],
|
128 |
)
|
129 |
|
130 |
write_report = Task(
|
131 |
-
description="Summarize the analysis into
|
132 |
-
expected_output="Markdown report.",
|
133 |
agent=report_writer,
|
134 |
context=[analyze_data],
|
135 |
)
|
@@ -138,7 +155,7 @@ if df is not None:
|
|
138 |
agents=[sql_dev, data_analyst, report_writer],
|
139 |
tasks=[extract_data, analyze_data, write_report],
|
140 |
process=Process.sequential,
|
141 |
-
verbose=
|
142 |
)
|
143 |
|
144 |
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary by experience level?'")
|
|
|
20 |
from datasets import load_dataset
|
21 |
import tempfile
|
22 |
|
23 |
+
# Environment setup
|
24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
25 |
|
26 |
+
# LLM Callback Logger
|
27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
28 |
def __init__(self, log_path: Path):
|
29 |
self.log_path = log_path
|
|
|
37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
39 |
|
40 |
+
# Initialize the LLM
|
41 |
llm = ChatGroq(
|
42 |
temperature=0,
|
43 |
model_name="mixtral-8x7b-32768",
|
|
|
47 |
st.title("SQL-RAG Using CrewAI π")
|
48 |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
49 |
|
50 |
+
# Input Options
|
51 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
52 |
df = None
|
53 |
|
|
|
69 |
st.success("File uploaded successfully!")
|
70 |
st.dataframe(df.head())
|
71 |
|
72 |
+
# SQL-RAG Analysis
|
73 |
if df is not None:
|
74 |
temp_dir = tempfile.TemporaryDirectory()
|
75 |
db_path = os.path.join(temp_dir.name, "data.db")
|
|
|
77 |
df.to_sql("salaries", connection, if_exists="replace", index=False)
|
78 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
79 |
|
80 |
+
# Tools with proper docstrings
|
81 |
@tool("list_tables")
|
82 |
def list_tables() -> str:
|
83 |
+
"""List all tables in the SQLite database."""
|
84 |
return ListSQLDatabaseTool(db=db).invoke("")
|
85 |
|
86 |
@tool("tables_schema")
|
87 |
def tables_schema(tables: str) -> str:
|
88 |
+
"""
|
89 |
+
Get the schema and sample rows for specific tables in the database.
|
90 |
+
Input: Comma-separated table names.
|
91 |
+
Example: 'salaries'
|
92 |
+
"""
|
93 |
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
94 |
|
95 |
@tool("execute_sql")
|
96 |
def execute_sql(sql_query: str) -> str:
|
97 |
+
"""
|
98 |
+
Execute a valid SQL query on the database and return the results.
|
99 |
+
Input: A SQL query string.
|
100 |
+
Example: 'SELECT * FROM salaries LIMIT 5;'
|
101 |
+
"""
|
102 |
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
103 |
|
104 |
@tool("check_sql")
|
105 |
def check_sql(sql_query: str) -> str:
|
106 |
+
"""
|
107 |
+
Check the validity of a SQL query before execution.
|
108 |
+
Input: A SQL query string.
|
109 |
+
Example: 'SELECT salary FROM salaries WHERE salary > 10000;'
|
110 |
+
"""
|
111 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
112 |
|
113 |
+
# Agents
|
114 |
sql_dev = Agent(
|
115 |
+
role="Database Developer",
|
116 |
+
goal="Extract relevant data by executing SQL queries.",
|
117 |
llm=llm,
|
118 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
119 |
)
|
120 |
|
121 |
data_analyst = Agent(
|
122 |
+
role="Data Analyst",
|
123 |
+
goal="Analyze the extracted data and generate detailed insights.",
|
124 |
llm=llm,
|
125 |
)
|
126 |
|
127 |
report_writer = Agent(
|
128 |
+
role="Report Writer",
|
129 |
+
goal="Summarize the analysis into an executive report.",
|
130 |
llm=llm,
|
131 |
)
|
132 |
|
133 |
+
# Tasks
|
134 |
extract_data = Task(
|
135 |
description="Extract data for the query: {query}.",
|
136 |
expected_output="Database query results.",
|
|
|
139 |
|
140 |
analyze_data = Task(
|
141 |
description="Analyze the query results for: {query}.",
|
142 |
+
expected_output="Analysis report.",
|
143 |
agent=data_analyst,
|
144 |
context=[extract_data],
|
145 |
)
|
146 |
|
147 |
write_report = Task(
|
148 |
+
description="Summarize the analysis into an executive summary.",
|
149 |
+
expected_output="Markdown-formatted report.",
|
150 |
agent=report_writer,
|
151 |
context=[analyze_data],
|
152 |
)
|
|
|
155 |
agents=[sql_dev, data_analyst, report_writer],
|
156 |
tasks=[extract_data, analyze_data, write_report],
|
157 |
process=Process.sequential,
|
158 |
+
verbose=True,
|
159 |
)
|
160 |
|
161 |
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary by experience level?'")
|