File size: 5,808 Bytes
857f873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st
import pandas as pd
import plotly.express as px
from pandasai import Agent
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.schema import Document
import os

# Set title
st.title("Data Analyzer")

# Add fields to input API keys via the sidebar
api_key = os.getenv("OPENAI_API_KEY")
pandasai_api_key = os.getenv("PANDASAI_API_KEY")

if not api_key or not pandasai_api_key:
    st.warning("API keys for OpenAI or PandasAI are missing. Ensure both keys are set in environment variables.")

# Function to load datasets into session
def load_dataset_into_session():
    input_option = st.radio(
        "Select Dataset Input:",
        ["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"],
    )

    # Option 1: Load dataset from the repo directory
    if input_option == "Use Repo Directory Dataset":
        file_path = "./source/test.csv"
        if st.button("Load Dataset"):
            try:
                st.session_state.df = pd.read_csv(file_path)
                st.success(f"File loaded successfully from '{file_path}'!")
                st.dataframe(st.session_state.df.head(10))
            except Exception as e:
                st.error(f"Error loading dataset from the repo directory: {e}")

    # Option 2: Load dataset from Hugging Face
    elif input_option == "Use Hugging Face Dataset":
        dataset_name = st.text_input(
            "Enter Hugging Face Dataset Name:", value="HUPD/hupd"
        )
        if st.button("Load Hugging Face Dataset"):
            try:
                from datasets import load_dataset
                dataset = load_dataset(dataset_name, split="train", trust_remote_code=True)
                if hasattr(dataset, "to_pandas"):
                    st.session_state.df = dataset.to_pandas()
                else:
                    st.session_state.df = pd.DataFrame(dataset)
                st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
                st.dataframe(st.session_state.df.head(10))
            except Exception as e:
                st.error(f"Error loading Hugging Face dataset: {e}")

    # Option 3: Upload CSV File
    elif input_option == "Upload CSV File":
        uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
        if uploaded_file:
            try:
                st.session_state.df = pd.read_csv(uploaded_file)
                st.success("File uploaded successfully!")
                st.dataframe(st.session_state.df.head(10))
            except Exception as e:
                st.error(f"Error reading uploaded file: {e}")

load_dataset_into_session()

# Check if the dataset and API keys are loaded
if "df" in st.session_state and api_key and pandasai_api_key:
    # Set API keys
    os.environ["OPENAI_API_KEY"] = api_key
    os.environ["PANDASAI_API_KEY"] = pandasai_api_key

    df = st.session_state.df
    st.write("Dataset Preview:")
    st.write(df.head())

    # Set up PandasAI Agent
    agent = Agent(df)

    # Convert dataframe into documents
    documents = [
        Document(
            page_content=", ".join([f"{col}: {row[col]}" for col in df.columns]),
            metadata={"index": index}
        )
        for index, row in df.iterrows()
    ]

    # Set up RAG
    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(documents, embeddings)
    retriever = vectorstore.as_retriever()
    qa_chain = RetrievalQA.from_chain_type(
        llm=ChatOpenAI(),
        chain_type="stuff",
        retriever=retriever
    )

    # Create tabs
    tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"])

    with tab1:
        st.header("Data Analysis with PandasAI")
        pandas_question = st.text_input("Ask a question about the dataset (PandasAI):")
        if pandas_question:
            result = agent.chat(pandas_question)
            st.write("PandasAI Answer:", result)

    with tab2:
        st.header("Q&A with RAG")
        rag_question = st.text_input("Ask a question about the dataset (RAG):")
        if rag_question:
            result = qa_chain.run(rag_question)
            st.write("RAG Answer:", result)

    with tab3:
        st.header("Data Visualization")
        viz_question = st.text_input("What kind of graph would you like? (e.g., 'Show a scatter plot of salary vs experience')")
        if viz_question:
            try:
                result = agent.chat(viz_question)
                
                # Extract Python code from PandasAI response
                import re
                code_pattern = r'```python\n(.*?)\n```'
                code_match = re.search(code_pattern, result, re.DOTALL)
                
                if code_match:
                    viz_code = code_match.group(1)
                    
                    # Replace matplotlib with plotly
                    viz_code = viz_code.replace('plt.', 'px.')
                    viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)')
                    
                    # Execute the modified code
                    exec(viz_code)
                    st.plotly_chart(fig)
                else:
                    st.write("Unable to generate the graph. Please try a different query.")
            except Exception as e:
                st.write(f"An error occurred: {str(e)}")
                st.write("Please try asking in a different way.")
else:
    if not api_key:
        st.warning("Please set the OpenAI API key in environment variables.")
    if not pandasai_api_key:
        st.warning("Please set the PandasAI API key in environment variables.")