File size: 5,808 Bytes
857f873 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import streamlit as st
import pandas as pd
import plotly.express as px
from pandasai import Agent
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.schema import Document
import os
# Set title
st.title("Data Analyzer")
# Add fields to input API keys via the sidebar
api_key = os.getenv("OPENAI_API_KEY")
pandasai_api_key = os.getenv("PANDASAI_API_KEY")
if not api_key or not pandasai_api_key:
st.warning("API keys for OpenAI or PandasAI are missing. Ensure both keys are set in environment variables.")
# Function to load datasets into session
def load_dataset_into_session():
input_option = st.radio(
"Select Dataset Input:",
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"],
)
# Option 1: Load dataset from the repo directory
if input_option == "Use Repo Directory Dataset":
file_path = "./source/test.csv"
if st.button("Load Dataset"):
try:
st.session_state.df = pd.read_csv(file_path)
st.success(f"File loaded successfully from '{file_path}'!")
st.dataframe(st.session_state.df.head(10))
except Exception as e:
st.error(f"Error loading dataset from the repo directory: {e}")
# Option 2: Load dataset from Hugging Face
elif input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input(
"Enter Hugging Face Dataset Name:", value="HUPD/hupd"
)
if st.button("Load Hugging Face Dataset"):
try:
from datasets import load_dataset
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True)
if hasattr(dataset, "to_pandas"):
st.session_state.df = dataset.to_pandas()
else:
st.session_state.df = pd.DataFrame(dataset)
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
st.dataframe(st.session_state.df.head(10))
except Exception as e:
st.error(f"Error loading Hugging Face dataset: {e}")
# Option 3: Upload CSV File
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
if uploaded_file:
try:
st.session_state.df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
st.dataframe(st.session_state.df.head(10))
except Exception as e:
st.error(f"Error reading uploaded file: {e}")
load_dataset_into_session()
# Check if the dataset and API keys are loaded
if "df" in st.session_state and api_key and pandasai_api_key:
# Set API keys
os.environ["OPENAI_API_KEY"] = api_key
os.environ["PANDASAI_API_KEY"] = pandasai_api_key
df = st.session_state.df
st.write("Dataset Preview:")
st.write(df.head())
# Set up PandasAI Agent
agent = Agent(df)
# Convert dataframe into documents
documents = [
Document(
page_content=", ".join([f"{col}: {row[col]}" for col in df.columns]),
metadata={"index": index}
)
for index, row in df.iterrows()
]
# Set up RAG
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(documents, embeddings)
retriever = vectorstore.as_retriever()
qa_chain = RetrievalQA.from_chain_type(
llm=ChatOpenAI(),
chain_type="stuff",
retriever=retriever
)
# Create tabs
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"])
with tab1:
st.header("Data Analysis with PandasAI")
pandas_question = st.text_input("Ask a question about the dataset (PandasAI):")
if pandas_question:
result = agent.chat(pandas_question)
st.write("PandasAI Answer:", result)
with tab2:
st.header("Q&A with RAG")
rag_question = st.text_input("Ask a question about the dataset (RAG):")
if rag_question:
result = qa_chain.run(rag_question)
st.write("RAG Answer:", result)
with tab3:
st.header("Data Visualization")
viz_question = st.text_input("What kind of graph would you like? (e.g., 'Show a scatter plot of salary vs experience')")
if viz_question:
try:
result = agent.chat(viz_question)
# Extract Python code from PandasAI response
import re
code_pattern = r'```python\n(.*?)\n```'
code_match = re.search(code_pattern, result, re.DOTALL)
if code_match:
viz_code = code_match.group(1)
# Replace matplotlib with plotly
viz_code = viz_code.replace('plt.', 'px.')
viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)')
# Execute the modified code
exec(viz_code)
st.plotly_chart(fig)
else:
st.write("Unable to generate the graph. Please try a different query.")
except Exception as e:
st.write(f"An error occurred: {str(e)}")
st.write("Please try asking in a different way.")
else:
if not api_key:
st.warning("Please set the OpenAI API key in environment variables.")
if not pandasai_api_key:
st.warning("Please set the PandasAI API key in environment variables.")
|