Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
from pandasai import Agent | |
from langchain_community.embeddings.openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import ChatOpenAI | |
from langchain.chains import RetrievalQA | |
from langchain.schema import Document | |
from datasets import load_dataset | |
import os | |
# Title | |
st.title("Dataset Analysis and Visualization") | |
# Fetch API keys from environment variables | |
api_key = os.getenv("OPENAI_API_KEY") | |
pandasai_api_key = os.getenv("PANDASAI_API_KEY") | |
# Initialize session state for the dataframe | |
if "df" not in st.session_state: | |
st.session_state.df = None | |
# Dataset loading section | |
st.subheader("Load Dataset") | |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
if input_option == "Use Hugging Face Dataset": | |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") | |
if st.button("Load Dataset"): | |
try: | |
# Load dataset and store it in session state | |
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True) | |
st.session_state.df = pd.DataFrame(dataset) | |
st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
except Exception as e: | |
st.error(f"Error loading dataset: {e}") | |
elif input_option == "Upload CSV File": | |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
if uploaded_file and st.button("Load CSV"): | |
try: | |
# Read uploaded CSV and store it in session state | |
st.session_state.df = pd.read_csv(uploaded_file) | |
st.success("File uploaded successfully!") | |
except Exception as e: | |
st.error(f"Error loading file: {e}") | |
# Show the loaded dataframe preview | |
if st.session_state.df is not None: | |
st.subheader("Dataset Preview") | |
st.dataframe(st.session_state.df.head(10)) | |
# Set up PandasAI Agent | |
agent = Agent(st.session_state.df) | |
# Convert DataFrame to documents | |
documents = [ | |
Document( | |
page_content=", ".join([f"{col}: {row[col]}" for col in st.session_state.df.columns]), | |
metadata={"index": index} | |
) | |
for index, row in st.session_state.df.iterrows() | |
] | |
# Set up RAG | |
embeddings = OpenAIEmbeddings() | |
vectorstore = FAISS.from_documents(documents, embeddings) | |
retriever = vectorstore.as_retriever() | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=ChatOpenAI(), | |
chain_type="stuff", | |
retriever=retriever | |
) | |
# Create tabs for different functionality | |
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"]) | |
with tab1: | |
st.header("Data Analysis with PandasAI") | |
pandas_question = st.text_input("Ask a question about your data (PandasAI):") | |
if pandas_question: | |
result = agent.chat(pandas_question) | |
st.write("PandasAI Answer:", result) | |
with tab2: | |
st.header("Q&A with RAG") | |
rag_question = st.text_input("Ask a question about your data (RAG):") | |
if rag_question: | |
result = qa_chain.run(rag_question) | |
st.write("RAG Answer:", result) | |
with tab3: | |
st.header("Data Visualization") | |
viz_question = st.text_input("What kind of graph would you like to see? (e.g., 'Show a scatter plot of salary vs experience')") | |
if viz_question: | |
try: | |
result = agent.chat(viz_question) | |
# Convert the PandasAI result into executable code | |
import re | |
code_pattern = r'```python\n(.*?)\n```' | |
code_match = re.search(code_pattern, result, re.DOTALL) | |
if code_match: | |
viz_code = code_match.group(1) | |
# Modify the code to use 'px' instead of 'plt' | |
viz_code = viz_code.replace('plt.', 'px.') | |
viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)') | |
# Execute the code and display the graph | |
exec(viz_code) | |
st.plotly_chart(fig) | |
else: | |
st.write("Failed to generate a graph. Please try asking differently.") | |
except Exception as e: | |
st.write(f"An error occurred: {str(e)}") | |
st.write("Please try rephrasing your question.") | |
else: | |
st.warning("No dataset loaded. Please select a dataset input option above.") | |
# Error handling for missing API keys | |
if not api_key: | |
st.error("Missing OpenAI API Key in environment variables.") | |
if not pandasai_api_key: | |
st.error("Missing PandasAI API Key in environment variables.") |