Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
from datasets import load_dataset | |
from pandasai import SmartDataframe | |
from pandasai.llm.openai import OpenAI | |
from langchain_community.embeddings.openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import ChatOpenAI | |
from langchain.chains import RetrievalQA | |
from langchain.schema import Document | |
import os | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
# Fetch API keys from environment variables | |
api_key = os.getenv("OPENAI_API_KEY") | |
pandasai_api_key = os.getenv("PANDASAI_API_KEY") | |
# Check for missing keys and raise specific errors | |
missing_keys = [] | |
if not api_key: | |
missing_keys.append("OPENAI_API_KEY") | |
if not pandasai_api_key: | |
missing_keys.append("PANDASAI_API_KEY") | |
if missing_keys: | |
missing_keys_str = ", ".join(missing_keys) | |
raise EnvironmentError( | |
f"The following API key(s) are missing: {missing_keys_str}. Please set them in the environment." | |
) | |
logger.debug(f"OPENAI_API_KEY: {api_key}") | |
logger.debug(f"PANDASAI_API_KEY: {pandasai_api_key}") | |
# Title of the app | |
st.title("PandasAI and RAG Data Analyzer") | |
# Function to load datasets into session | |
def load_dataset_into_session(): | |
input_option = st.radio( | |
"Select Dataset Input:", | |
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], | |
) | |
# Option 1: Load dataset from the repo directory | |
if input_option == "Use Repo Directory Dataset": | |
file_path = "./source/test.csv" | |
if st.button("Load Repo Dataset"): | |
try: | |
st.session_state.df = pd.read_csv(file_path) | |
st.success(f"File loaded successfully from '{file_path}'!") | |
st.dataframe(st.session_state.df.head(10)) | |
except Exception as e: | |
st.error(f"Error loading dataset from the repo directory: {e}") | |
logger.error(f"Error loading dataset from repo directory: {e}") | |
# Option 2: Load dataset from Hugging Face | |
elif input_option == "Use Hugging Face Dataset": | |
dataset_name = st.text_input( | |
"Enter Hugging Face Dataset Name:", value="HUPD/hupd" | |
) | |
if st.button("Load Hugging Face Dataset"): | |
try: | |
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True) | |
if hasattr(dataset, "to_pandas"): | |
st.session_state.df = dataset.to_pandas() | |
else: | |
st.session_state.df = pd.DataFrame(dataset) | |
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!") | |
st.dataframe(st.session_state.df.head(10)) | |
except Exception as e: | |
st.error(f"Error loading Hugging Face dataset: {e}") | |
logger.error(f"Error loading Hugging Face dataset: {e}") | |
# Option 3: Upload CSV File | |
elif input_option == "Upload CSV File": | |
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"]) | |
if uploaded_file: | |
try: | |
st.session_state.df = pd.read_csv(uploaded_file) | |
st.success("File uploaded successfully!") | |
st.dataframe(st.session_state.df.head(10)) | |
except Exception as e: | |
st.error(f"Error reading uploaded file: {e}") | |
logger.error(f"Error reading uploaded file: {e}") | |
# Ensure session state for the DataFrame | |
if "df" not in st.session_state: | |
st.session_state.df = None | |
# Load dataset into session | |
load_dataset_into_session() | |
# Check if a dataset is loaded | |
if st.session_state.df is not None: | |
df = st.session_state.df | |
try: | |
# Initialize OpenAI LLM | |
llm = OpenAI(api_token=pandasai_api_key) # PandasAI LLM | |
# Create SmartDataframe for PandasAI | |
smart_df = SmartDataframe(df, config={"llm": llm}) | |
# Convert DataFrame to documents for RAG | |
documents = [ | |
Document( | |
page_content=", ".join( | |
[f"{col}: {row[col]}" for col in df.columns if pd.notnull(row[col])] | |
), | |
metadata={"index": index}, | |
) | |
for index, row in df.iterrows() | |
] | |
# Set up RAG | |
embeddings = OpenAIEmbeddings() | |
vectorstore = FAISS.from_documents(documents, embeddings) | |
retriever = vectorstore.as_retriever() | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=ChatOpenAI(), | |
chain_type="stuff", | |
retriever=retriever, | |
) | |
# Create tabs | |
tab1, tab2, tab3 = st.tabs( | |
["PandasAI Analysis", "RAG Q&A", "Data Visualization"] | |
) | |
# Tab 1: PandasAI Analysis | |
with tab1: | |
st.header("PandasAI Analysis") | |
pandas_question = st.text_input("Ask a question about the data (PandasAI):") | |
if pandas_question: | |
try: | |
result = smart_df.chat(pandas_question) | |
if result: | |
st.write("PandasAI Answer:", result) | |
else: | |
st.warning("PandasAI returned no result. Try another question.") | |
except Exception as e: | |
st.error(f"Error during PandasAI Analysis: {e}") | |
logger.error(f"PandasAI Analysis error: {e}") | |
# Tab 2: RAG Q&A | |
with tab2: | |
st.header("RAG Q&A") | |
rag_question = st.text_input("Ask a question about the data (RAG):") | |
if rag_question: | |
try: | |
result = qa_chain.run(rag_question) | |
st.write("RAG Answer:", result) | |
except Exception as e: | |
st.error(f"Error during RAG Q&A: {e}") | |
logger.error(f"RAG Q&A error: {e}") | |
# Tab 3: Data Visualization | |
with tab3: | |
st.header("Data Visualization") | |
viz_question = st.text_input( | |
"What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')" | |
) | |
if viz_question: | |
try: | |
result = smart_df.chat(viz_question) | |
import re | |
code_pattern = r"```python\n(.*?)\n```" | |
code_match = re.search(code_pattern, result, re.DOTALL) | |
if code_match: | |
viz_code = code_match.group(1) | |
viz_code = viz_code.replace("plt.", "px.") | |
exec(viz_code) | |
st.plotly_chart(fig) | |
else: | |
st.warning("Could not generate a graph. Try a different query.") | |
except Exception as e: | |
st.error(f"Error during Data Visualization: {e}") | |
except Exception as e: | |
st.error(f"An error occurred during processing: {e}") | |
else: | |
st.info("Please load a dataset to start analysis.") | |