Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from pandasai import SmartDataframe | |
from pandasai.llm import OpenAI | |
from langchain_groq import ChatGroq | |
from dotenv import load_dotenv | |
from datasets import load_dataset | |
import os | |
def initialize_llm(model_choice): | |
"""Initialize the chosen LLM based on the user's selection.""" | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
if model_choice == "llama-3.3-70b": | |
if not groq_api_key: | |
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") | |
return None | |
st.success("Using model: llama-3.3-70b (Groq)") | |
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") | |
elif model_choice == "GPT-4o": | |
if not openai_api_key: | |
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") | |
return None | |
st.success("Using model: GPT-4o (OpenAI)") | |
return OpenAI(api_token=openai_api_key) | |
def load_dataset_into_session(): | |
"""Load dataset from Hugging Face or via CSV upload.""" | |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
if input_option == "Use Hugging Face Dataset": | |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") | |
if st.button("Load Dataset"): | |
try: | |
dataset = load_dataset( | |
dataset_name, | |
name="sample", | |
split="train", | |
trust_remote_code=True, | |
uniform_split=True | |
) | |
st.session_state.df = pd.DataFrame(dataset) | |
st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
st.dataframe(st.session_state.df.head(10)) | |
except Exception as e: | |
st.error(f"Error loading dataset: {e}") | |
elif input_option == "Upload CSV File": | |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
if uploaded_file: | |
try: | |
st.session_state.df = pd.read_csv(uploaded_file) | |
st.success("File uploaded successfully!") | |
st.dataframe(st.session_state.df.head(10)) | |
except Exception as e: | |
st.error(f"Error reading file: {e}") | |
if "df" not in st.session_state: | |
st.session_state.df = None | |
# Streamlit app | |
st.title("Chat With Your Dataset Using PandasAI") | |
# Section 1: LLM Selection | |
st.sidebar.title("Choose Your LLM") | |
model_choice = st.sidebar.radio( | |
"Select a model:", | |
("GPT-4o", "llama-3.3-70b"), | |
help="Choose between OpenAI GPT-4o or Groq Llama-3.3-70b." | |
) | |
# Initialize LLM | |
llm = initialize_llm(model_choice) | |
if not llm: | |
st.stop() | |
# Section 2: Dataset Loading | |
st.header("Dataset Selection") | |
load_dataset_into_session() | |
# Section 3: Query and Interaction | |
if st.session_state.df is not None: | |
st.subheader("Ask Questions About Your Dataset") | |
chat_df = SmartDataframe(st.session_state.df, config={"llm": llm}) | |
user_query = st.text_input("Ask a question about your data:", "") | |
if user_query: | |
try: | |
response = chat_df.chat(user_query) | |
st.write("### Response:") | |
st.write(response) | |
# Check for plot-related keywords | |
if any(keyword in user_query.lower() for keyword in ["plot", "graph", "draw", "visualize", "chart", "visualise"]): | |
st.write("### Generating Plot...") | |
try: | |
chat_df.chat(user_query) | |
except Exception as e: | |
st.error(f"An error occurred while generating the plot: {e}") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
else: | |
st.info("Please load a dataset to start interacting.") | |