import streamlit as st import pandas as pd import plotly.express as px from pandasai import Agent from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI from langchain.chains import RetrievalQA from langchain.schema import Document from datasets import load_dataset import os # Title st.title("Dataset Analysis and Visualization") # Fetch API keys from environment variables api_key = os.getenv("OPENAI_API_KEY") pandasai_api_key = os.getenv("PANDASAI_API_KEY") # Initialize session state for the dataframe if "df" not in st.session_state: st.session_state.df = None # Dataset loading section st.subheader("Load Dataset") input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) if input_option == "Use Hugging Face Dataset": dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") if st.button("Load Dataset"): try: # Load dataset and store it in session state dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True) st.session_state.df = pd.DataFrame(dataset) st.success(f"Dataset '{dataset_name}' loaded successfully!") except Exception as e: st.error(f"Error loading dataset: {e}") elif input_option == "Upload CSV File": uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) if uploaded_file and st.button("Load CSV"): try: # Read uploaded CSV and store it in session state st.session_state.df = pd.read_csv(uploaded_file) st.success("File uploaded successfully!") except Exception as e: st.error(f"Error loading file: {e}") # Show the loaded dataframe preview if st.session_state.df is not None: st.subheader("Dataset Preview") st.dataframe(st.session_state.df.head(10)) # Set up PandasAI Agent agent = Agent(st.session_state.df) # Convert DataFrame to documents documents = [ Document( page_content=", ".join([f"{col}: {row[col]}" for col in st.session_state.df.columns]), metadata={"index": index} ) for index, row in st.session_state.df.iterrows() ] # Set up RAG embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(documents, embeddings) retriever = vectorstore.as_retriever() qa_chain = RetrievalQA.from_chain_type( llm=ChatOpenAI(), chain_type="stuff", retriever=retriever ) # Create tabs for different functionality tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"]) with tab1: st.header("Data Analysis with PandasAI") pandas_question = st.text_input("Ask a question about your data (PandasAI):") if pandas_question: result = agent.chat(pandas_question) st.write("PandasAI Answer:", result) with tab2: st.header("Q&A with RAG") rag_question = st.text_input("Ask a question about your data (RAG):") if rag_question: result = qa_chain.run(rag_question) st.write("RAG Answer:", result) with tab3: st.header("Data Visualization") viz_question = st.text_input("What kind of graph would you like to see? (e.g., 'Show a scatter plot of salary vs experience')") if viz_question: try: result = agent.chat(viz_question) # Convert the PandasAI result into executable code import re code_pattern = r'```python\n(.*?)\n```' code_match = re.search(code_pattern, result, re.DOTALL) if code_match: viz_code = code_match.group(1) # Modify the code to use 'px' instead of 'plt' viz_code = viz_code.replace('plt.', 'px.') viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)') # Execute the code and display the graph exec(viz_code) st.plotly_chart(fig) else: st.write("Failed to generate a graph. Please try asking differently.") except Exception as e: st.write(f"An error occurred: {str(e)}") st.write("Please try rephrasing your question.") else: st.warning("No dataset loaded. Please select a dataset input option above.") # Error handling for missing API keys if not api_key: st.error("Missing OpenAI API Key in environment variables.") if not pandasai_api_key: st.error("Missing PandasAI API Key in environment variables.")