import streamlit as st import pandas as pd import plotly.express as px from datasets import load_dataset from pandasai import Agent from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI from langchain.chains import RetrievalQA from langchain.schema import Document import os import logging # Configure logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Fetch API keys from environment variables api_key = os.getenv("OPENAI_API_KEY") pandasai_api_key = os.getenv("PANDASAI_API_KEY") # Check for missing keys and raise specific errors missing_keys = [] if not api_key: missing_keys.append("OPENAI_API_KEY") if not pandasai_api_key: missing_keys.append("PANDASAI_API_KEY") if missing_keys: missing_keys_str = ", ".join(missing_keys) raise EnvironmentError( f"The following API key(s) are missing: {missing_keys_str}. Please set them in the environment." ) # Title of the app st.title("Data Analyzer") # Function to load datasets into session def load_dataset_into_session(): input_option = st.radio( "Select Dataset Input:", ["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], ) # Option 1: Load dataset from the repo directory if input_option == "Use Repo Directory Dataset": file_path = "./source/test.csv" if st.button("Load Repo Dataset"): try: st.session_state.df = pd.read_csv(file_path) st.success(f"File loaded successfully from '{file_path}'!") st.dataframe(st.session_state.df.head(10)) except Exception as e: st.error(f"Error loading dataset from the repo directory: {e}") logger.error(f"Error loading dataset from repo directory: {e}") # Option 2: Load dataset from Hugging Face elif input_option == "Use Hugging Face Dataset": dataset_name = st.text_input( "Enter Hugging Face Dataset Name:", value="HUPD/hupd" ) if st.button("Load Hugging Face Dataset"): try: dataset = load_dataset(dataset_name, split="train", trust_remote_code=True) # Convert Hugging Face dataset to Pandas DataFrame if hasattr(dataset, "to_pandas"): st.session_state.df = dataset.to_pandas() else: st.session_state.df = pd.DataFrame(dataset) st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!") st.dataframe(st.session_state.df.head(10)) except Exception as e: st.error(f"Error loading Hugging Face dataset: {e}") logger.error(f"Error loading Hugging Face dataset: {e}") # Option 3: Upload CSV File elif input_option == "Upload CSV File": uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"]) if uploaded_file: try: st.session_state.df = pd.read_csv(uploaded_file) st.success("File uploaded successfully!") st.dataframe(st.session_state.df.head(10)) except Exception as e: st.error(f"Error reading uploaded file: {e}") logger.error(f"Error reading uploaded file: {e}") # Ensure session state for the DataFrame if "df" not in st.session_state: st.session_state.df = None # Load dataset into session load_dataset_into_session() # Check if a dataset is loaded if st.session_state.df is not None: df = st.session_state.df try: # Initialize PandasAI Agent agent = Agent(df) # Convert DataFrame to documents for RAG documents = [ Document( page_content=", ".join( [f"{col}: {row[col]}" for col in df.columns if pd.notnull(row[col])] ), metadata={"index": index}, ) for index, row in df.iterrows() ] # Set up RAG embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(documents, embeddings) retriever = vectorstore.as_retriever() qa_chain = RetrievalQA.from_chain_type( llm=ChatOpenAI(), chain_type="stuff", retriever=retriever, ) # Create tabs tab1, tab2, tab3 = st.tabs( ["PandasAI Analysis", "RAG Q&A", "Data Visualization"] ) # Tab 1: PandasAI Analysis with tab1: st.header("PandasAI Analysis") pandas_question = st.text_input("Ask a question about the data (PandasAI):") if pandas_question: try: result = agent.chat(pandas_question) st.write("PandasAI Answer:", result) except Exception as e: st.error(f"Error during PandasAI Analysis: {e}") # Tab 2: RAG Q&A with tab2: st.header("RAG Q&A") rag_question = st.text_input("Ask a question about the data (RAG):") if rag_question: try: result = qa_chain.run(rag_question) st.write("RAG Answer:", result) except Exception as e: st.error(f"Error during RAG Q&A: {e}") # Tab 3: Data Visualization with tab3: st.header("Data Visualization") viz_question = st.text_input( "What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')" ) if viz_question: try: result = agent.chat(viz_question) # Extract Python code for visualization import re code_pattern = r"```python\n(.*?)\n```" code_match = re.search(code_pattern, result, re.DOTALL) if code_match: viz_code = code_match.group(1) # Replace matplotlib (plt) code with Plotly (px) viz_code = viz_code.replace("plt.", "px.") exec(viz_code) # Execute the visualization code st.plotly_chart(fig) else: st.warning("Could not generate a graph. Try a different query.") except Exception as e: st.error(f"Error during Data Visualization: {e}") except Exception as e: st.error(f"An error occurred during processing: {e}") else: st.info("Please load a dataset to start analysis.")