Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Define the class labels as used during training
|
7 |
+
labels = ['Leggings', 'Jogger', 'Palazzo', 'Cargo', 'Dresspants', 'Chinos']
|
8 |
+
|
9 |
+
# Load the ViT model and feature extractor
|
10 |
+
model = ViTForImageClassification.from_pretrained("DumbledoreWiz/PantsShape")
|
11 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
|
12 |
+
|
13 |
+
# Set the model to evaluation mode
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
# Define the prediction function
|
17 |
+
def predict(image):
|
18 |
+
# Preprocess the image
|
19 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(**inputs)
|
23 |
+
logits = outputs.logits
|
24 |
+
probabilities = torch.nn.functional.softmax(logits[0], dim=0)
|
25 |
+
|
26 |
+
# Prepare the output dictionary
|
27 |
+
result = {labels[i]: float(probabilities[i]) for i in range(len(labels))}
|
28 |
+
return result
|
29 |
+
|
30 |
+
# Set up the Gradio Interface
|
31 |
+
gradio_app = gr.Interface(
|
32 |
+
fn=predict,
|
33 |
+
inputs=gr.Image(type="pil"),
|
34 |
+
outputs=gr.Label(num_top_classes=6),
|
35 |
+
title="Pants Shape Classifier"
|
36 |
+
)
|
37 |
+
|
38 |
+
# Launch the app
|
39 |
+
if __name__ == "__main__":
|
40 |
+
gradio_app.launch()
|