File size: 25,910 Bytes
fc5ecba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import random
import math
import os
import pickle
from collections import defaultdict, namedtuple
import string

os.environ['TOKENIZERS_PARALLELISM'] = 'false' # turn off since we're using multiple threads for loading anyway

from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline, set_seed, GPT2Tokenizer, GPT2Model
import numpy as np
from tqdm import tqdm
import torch

from util import suppress_stdout
from poetry_util import is_iambic, count_syllables, get_rhymes, get_rhyme_group
from constants import *

DatasetInfo = namedtuple('DatasetInfo', 
                ['index2word', 'word2index', 'total_words', 'vocab', 'glove_embeddings'])
RhymeInfo = namedtuple('RhymeInfo', 
                ['word2rhyme_group', 'rhyme_group_counts', 'rhyme_groups', 'index2rhyme_group', 'rhyme_group2index', 'total_rhyme_groups'])

def collate(batch):
    pad_id = batch[0][4]
    inputs = [b[0] for b in batch]
    lengths = torch.LongTensor([b[1] for b in batch])
    max_length = lengths.max()
    for i in range(len(inputs)):
        if len(inputs[i]) < max_length:
            inputs[i] = torch.cat([inputs[i], torch.zeros(max_length - len(inputs[i])).long()], dim=0) # actually 0 is fine as pad since it's masked out
    inputs = torch.stack(inputs, dim=0)
    future_words = torch.LongTensor([b[2] for b in batch]).unsqueeze(0).expand(len(batch), -1).clone() # batch x N=batch
    labels = torch.zeros_like(future_words).long()
    labels = labels.scatter(1, torch.arange(len(batch)).unsqueeze(1), torch.ones(len(batch)).long().unsqueeze(1)).clone()
    log_probs = torch.Tensor([b[3] for b in batch])
    classification_labels = [b[5] for b in batch] # batch
    if type(classification_labels[0]) == list:
        for i in range(len(classification_labels)):
            assert len(classification_labels[i]) == lengths[i]
            if len(classification_labels[i]) < max_length:
                classification_labels[i] = torch.cat([torch.LongTensor(classification_labels[i]), -1 + torch.zeros(max_length - len(classification_labels[i])).long()], dim=0)
            else:
                classification_labels[i] = torch.LongTensor(classification_labels[i])
        classification_labels = torch.stack(classification_labels, dim=0) # batch x seq
    else:
        assert type(classification_labels[0]) == int
        classification_labels = torch.LongTensor(classification_labels) # they're just int labels
    syllables_to_go = torch.LongTensor([b[6] for b in batch])
    future_word_num_syllables = torch.LongTensor([b[7] for b in batch])
    rhyme_group_index = torch.LongTensor([b[8] for b in batch])
    return (inputs, lengths, future_words, log_probs, labels, classification_labels, syllables_to_go, future_word_num_syllables, rhyme_group_index)


def load_rhyme_info(index2word, vocab):
    word2rhyme_group = defaultdict(lambda: UNKNOWN_RHYME_GROUP)
    rhyme_group_counts = defaultdict(lambda: 0)
    rhyme_groups = set()
    for word in index2word:
        try:
            rhyme_group = get_rhyme_group(word)
            word2rhyme_group[word] = rhyme_group
            rhyme_group_counts[rhyme_group] += (vocab[word] if word in vocab else 1) # for rare words not in vocab, just use 1
            rhyme_groups.add(rhyme_group)
        except:
            rhyme_group_counts[UNKNOWN_RHYME_GROUP] += (vocab[word] if word in vocab else 1)
    index2rhyme_group = [UNKNOWN_RHYME_GROUP] + sorted(list(rhyme_groups))
    rhyme_group2index = {s: i for i, s in enumerate(index2rhyme_group)}
    total_rhyme_groups = sum(rhyme_group_counts.values())

    return RhymeInfo(word2rhyme_group=dict(word2rhyme_group), 
                     rhyme_group_counts=dict(rhyme_group_counts), 
                     rhyme_groups=rhyme_groups, 
                     index2rhyme_group=index2rhyme_group, 
                     rhyme_group2index=rhyme_group2index, 
                     total_rhyme_groups=total_rhyme_groups)


class Dataset:
    def __init__(self, args):
        print('loading data')
        random.seed(args.seed)
        self.batch_size = args.batch_size
        self.data_dir = args.data_dir
        self.topic = args.task == 'topic'
        self.formality = args.task == 'formality'
        self.iambic = args.task == 'iambic'
        self.rhyme = args.task == 'rhyme'
        self.newline = args.task == 'newline'

        self.tokenizer = AutoTokenizer.from_pretrained(FORMALITY_MODEL_STRING if self.formality else TOPIC_MODEL_STRING)
        self.tokenizer.add_special_tokens({'pad_token': PAD_TOKEN})
        self.gpt_pad_id = self.tokenizer.encode(PAD_TOKEN)[0] # actually just the vocab size
        sentences = []
        self.vocab = defaultdict(lambda: 0)
        if self.formality:
            self.vocab['placeholder'] = 1 # anything so we don't crash
            train, val, test = [], [], []
            for category, label in [('formal', 1), ('informal', 0)]:
                with open(os.path.join(args.data_dir, 'train', category), 'r') as rf:
                    for i, line in enumerate(rf):
                        if len(line) > FORMALITY_MAX_LEN:
                            line = ' '.join(line.strip()[:FORMALITY_MAX_LEN].split()[:-1]) # cutoff words until below max len; chosen so only ~20 examples affected in dataset
                        if i < FORMALITY_VAL_SIZE // 2:
                            val.append((line.strip(), label))
                        else:
                            train.append((line.strip(), label))
                with open(os.path.join(args.data_dir, 'test', category), 'r') as rf:
                    for line in rf:
                        if len(line) > FORMALITY_MAX_LEN:
                            line = ' '.join(line.strip()[:FORMALITY_MAX_LEN].split()[:-1]) # cutoff words until below max len
                        test.append((line.strip(), label))
            self.splits = {}
            self.splits['train'], self.splits['val'], self.splits['test'] = train, val, test
        else: # topic / poetry
            for root, _, filenames in os.walk(args.data_dir):
                for fname in filenames:
                    with open(os.path.join(root, fname), 'r') as rf:
                        for line in rf:
                            sentences.append(line.strip())
                            for word in line.strip().split(' '):
                                self.vocab[word] += 1
            random.shuffle(sentences)
            self.splits = {}
            if args.debug:
                self.splits['val'] = sentences
                self.splits['test'] = sentences
                self.splits['train'] = sentences
            else:
                self.splits['val'] = sentences[:TOPIC_VAL_SIZE]
                self.splits['test'] = sentences[TOPIC_VAL_SIZE:2*TOPIC_VAL_SIZE]
                self.splits['train'] = sentences[2*TOPIC_VAL_SIZE:]

        if args.dataset_info is not None:
            print('loading dataset info from file')
            with open(args.dataset_info, 'rb') as rf:
                dataset_info = pickle.load(rf)
            self.vocab, self.total_words, self.index2word, self.word2index, self.glove_embeddings = \
                dataset_info.vocab, dataset_info.total_words, dataset_info.index2word, dataset_info.word2index, dataset_info.glove_embeddings
            self.dataset_info = dataset_info
        else:
            print('generating dataset info from scratch')
            words_values = list(self.vocab.items())
            words_values = sorted(words_values, key=lambda x: x[1], reverse=True)
            if args.glove_file is None:
                print('no glove embeddings given')
                for word, _ in words_values[VOCAB_SIZE:]: # only use somewhat common tokens
                    del self.vocab[word]
                glove_embeddings = None
            else:
                print('loading glove embeddings')
                glove_embeddings = {}
                with open(args.glove_file, 'r') as rf:
                    for i, line in enumerate(rf):
                        if i % GLOVE_PRINT_PROGRESS_FREQ == 0:
                            print(i)
                        line = line.strip().split()
                        if len(line) != GLOVE_DIM + 1:
                            continue # skip multi-word embeddings which are rare anyway
                        glove_embeddings[line[0]] = [float(x) for x in line[1:]]
                for word, _ in words_values:
                    if word not in glove_embeddings:
                        del self.vocab[word]
            self.total_words = sum(self.vocab.values())
            self.index2word = [PAD_TOKEN] + sorted(list(self.vocab.keys()))
            self.word2index = {s: i for i, s in enumerate(self.index2word)}
            self.vocab = dict(self.vocab) # so we can pickle later
            if glove_embeddings is None:
                self.glove_embeddings = None
            else:
                self.glove_embeddings = torch.stack([torch.zeros(GLOVE_DIM)] + [torch.Tensor(glove_embeddings[word]) for word in self.index2word[1:]], dim=0)

            self.dataset_info = DatasetInfo(index2word=self.index2word,
                                            word2index=self.word2index,
                                            total_words=self.total_words,
                                            vocab=self.vocab,
                                            glove_embeddings=self.glove_embeddings)
        
        if self.rhyme:
            if args.rhyme_info is not None:
                print('loading rhyme info from file')
                with open(args.rhyme_info, 'rb') as rf:
                    self.rhyme_info = pickle.load(rf)
            else:
                self.rhyme_info = load_rhyme_info(self.index2word, self.vocab)
            self.word2rhyme_group, self.rhyme_group_counts, self.rhyme_groups, self.index2rhyme_group, self.rhyme_group2index, self.total_rhyme_groups = \
                    defaultdict(lambda: UNKNOWN_RHYME_GROUP, self.rhyme_info.word2rhyme_group), self.rhyme_info.rhyme_group_counts, self.rhyme_info.rhyme_groups, self.rhyme_info.index2rhyme_group, self.rhyme_info.rhyme_group2index, self.rhyme_info.total_rhyme_groups

        print('done loading data')
        print('split sizes:')
        for key in ['train', 'val', 'test']:
            print(key, len(self.splits[key]))
        if not self.formality:
            print('total words', self.total_words)
            print('vocab size', len(self.index2word))


    def shuffle(self, split, seed=None):
        assert split in ['train', 'val', 'test']
        if seed is not None:
            random.seed(seed)
        random.shuffle(self.splits[split])


    def loader(self, split, num_workers=20, indices=None):
        assert split in ['train', 'val', 'test']
        data = self.splits[split] if indices is None else [self.splits[split][i] for i in indices]
        return torch.utils.data.DataLoader(SplitLoader(data, self), batch_size=self.batch_size, pin_memory=True, collate_fn=collate, num_workers=num_workers)


class SplitLoader(torch.utils.data.IterableDataset):
    def __init__(self, data, parent):
        super(SplitLoader).__init__()
        self.data = data
        self.pos = 0
        self.parent = parent


    def __len__(self):
        return len(self.data)


    def __iter__(self):
        return self
    

    def __next__(self):
        increment = 1
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is not None: # # in a worker process
            increment = worker_info.num_workers
            worker_id = worker_info.id
            if self.pos == 0:
                self.pos = worker_id
        valid = False
        while not valid:
            if self.pos >= len(self):
                raise StopIteration
            if self.parent.topic:
                failed = False
                future_word_num_syllables, rhyme_group_index, syllables_to_go = -1, -1, -1
                raw_sentence, classification_label = self.data[self.pos], -1
                original_sentence = raw_sentence.split()
                sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
                length = len(sentence)
                min_sentence_length = MIN_SENTENCE_LENGTH
                if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
                    pos_to_split = random.randint(1, length - 1) # for lm, learn all positions at once
                    inp = sentence[:pos_to_split]
                    length = len(inp)
                    num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
                    if not failed and num_words_in_input < len(original_sentence):
                        future_word_position_max = len(original_sentence) - 1
                        future_word_position = random.randint(num_words_in_input-1, future_word_position_max) # allow the last possibly partial word though
                        future_word = original_sentence[future_word_position]
                        unstripped_future_word = future_word
                        future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
                        if not failed and future_word in self.parent.word2index.keys():
                            word_log_prob = math.log(self.parent.vocab[future_word] / self.parent.total_words) # roughly baseline prob of word under noise model
                            future_word = self.parent.word2index[future_word]
                            pad_id = self.parent.gpt_pad_id
                            example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
                            valid = not failed
            elif self.parent.formality:
                future_word_num_syllables, rhyme_group_index, syllables_to_go = -1, -1, -1
                raw_sentence, classification_label = self.data[self.pos]
                original_sentence = raw_sentence.split()
                sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
                length = len(sentence)
                min_sentence_length = MIN_SENTENCE_LENGTH
                if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
                    pos_to_split = length # no need to split; we're going to train on all possible prefixes simultaneously for efficiency
                    inp = sentence[:pos_to_split]
                    length = len(inp)
                    num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
                    # only look up to 10 words ahead if we're doing count syllables, since we'll filter out anything more than 10 syllables ahead anyway
                    future_word_position_max = len(original_sentence) - 1
                    future_word_position = 0
                    future_word = 'placeholder'
                    unstripped_future_word = future_word
                    future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
                    word_log_prob, future_word = 0, 0
                    pad_id = self.parent.gpt_pad_id
                    example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
                    valid = True
            elif self.parent.iambic:
                failed = False
                future_word_num_syllables, rhyme_group_index, syllables_to_go = -1, -1, -1
                raw_sentence, classification_label = self.data[self.pos], -1
                original_sentence = raw_sentence.split()
                sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
                length = len(sentence)
                min_sentence_length = MIN_SENTENCE_LENGTH
                if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
                    pos_to_split = random.randint(0, length - 1)
                    # try to get a subseq of exactly 10 syllables
                    inp = sentence[pos_to_split:]
                    num_syllables = 0
                    checked = False
                    for i in range(1, len(inp)):
                        decoded = self.parent.tokenizer.decode(inp[:i])
                        num_syllables = count_syllables(decoded)
                        if num_syllables > POETRY_LINE_SYLLABLES:
                            inp = inp[:i-1] # might get a few data points where the split is in the middle of a word, but it should be ok for learning. 
                            last_line_length = i-1
                            decoded = self.parent.tokenizer.decode(inp)
                            num_syllables = count_syllables(decoded)
                            checked = True
                            break
                    if not checked or num_syllables != POETRY_LINE_SYLLABLES:
                        failed = True
                    length = len(inp)
                    num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
                    classification_label = [is_iambic(self.parent.tokenizer.decode(inp)) for _ in range(length)] # predict for whole seq including future
                    # only look up to 10 words ahead if we're doing count syllables, since we'll filter out anything more than 10 syllables ahead anyway
                    future_word_position_max = len(original_sentence) - 1
                    future_word_position = 0
                    future_word = 'placeholder'
                    unstripped_future_word = future_word
                    future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
                    if not failed:
                        word_log_prob, future_word = 0, 0
                        pad_id = self.parent.gpt_pad_id
                        example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
                        valid = not failed
            elif self.parent.rhyme:
                failed = False
                future_word_num_syllables, rhyme_group_index = -1, -1
                raw_sentence, classification_label = self.data[self.pos], -1
                original_sentence = raw_sentence.split()
                sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
                length = len(sentence)
                min_sentence_length = MIN_SENTENCE_LENGTH
                if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
                    pos_to_split = random.randint(1, length - 1) # for lm, learn all positions at once
                    inp = sentence[:pos_to_split]
                    length = len(inp)
                    num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
                    if not failed and num_words_in_input < len(original_sentence):
                        # only look up to 10 words ahead if we're doing count syllables, since we'll filter out anything more than 10 syllables ahead anyway
                        future_word_position_max = min(len(original_sentence) - 1, num_words_in_input + MAX_COUNT_SYLLABLE_DIST)
                        future_word_position = random.randint(num_words_in_input-1, future_word_position_max) # allow the last possibly partial word though
                        future_word = original_sentence[future_word_position]
                        unstripped_future_word = future_word
                        future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
                                                        
                        words_in_between = original_sentence[num_words_in_input-1:future_word_position+1]
                        syllables_to_go = count_syllables(' '.join(words_in_between))
                        if syllables_to_go > MAX_COUNT_SYLLABLE_DIST:
                            failed = True
                        future_word_num_syllables = count_syllables(future_word)
                        rhyme_group = self.parent.word2rhyme_group[future_word]
                        rhyme_group_index = self.parent.rhyme_group2index[rhyme_group]
                        # truncate context a bit since we're just doing couplets. random length from 1 to max desired length for this purpose. 
                        desired_length = random.randint(1, MAX_COUNT_SYLLABLE_INPUT_LENGTH)
                        inp = inp[-desired_length:]
                        length = len(inp)

                        if not failed and future_word in self.parent.word2index.keys():
                            word_log_prob = math.log(self.parent.rhyme_group_counts[rhyme_group] / self.parent.total_rhyme_groups)
                            future_word = rhyme_group_index # future conditioning is just the rhyme group in this case
                            pad_id = self.parent.gpt_pad_id
                            example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
                            valid = not failed
            elif self.parent.newline:
                failed = False
                future_word_num_syllables, rhyme_group_index = -1, -1
                raw_sentence, classification_label = self.data[self.pos], -1
                original_sentence = raw_sentence.split()
                sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
                length = len(sentence)
                min_sentence_length = MIN_SENTENCE_LENGTH
                if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
                    pos_to_split = random.randint(1, length - 1) # for lm, learn all positions at once
                    inp = sentence[:pos_to_split]
                    while pos_to_split < len(sentence):
                        if len(self.parent.tokenizer.decode(inp).split()) == len(self.parent.tokenizer.decode(sentence[:pos_to_split + 1]).split()):
                            pos_to_split += 1
                            inp = sentence[:pos_to_split]
                        else:
                            break
                    length = len(inp)
                    num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
                    if not failed and num_words_in_input < len(original_sentence):
                        # only look up to 10 words ahead if we're doing count syllables, since we'll filter out anything more than 10 syllables ahead anyway
                        future_word_position_max = len(original_sentence) - 1
                        future_word_position = random.randint(num_words_in_input-1, future_word_position_max) # allow the last possibly partial word though
                        future_word = original_sentence[future_word_position]
                        unstripped_future_word = future_word
                        future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
                                                        
                        # future_word = original_sentence[-1] # useful for debugging
                        words_in_between = original_sentence[num_words_in_input-1:future_word_position+1]
                        syllables_to_go = count_syllables(' '.join(words_in_between))
                        if syllables_to_go > MAX_COUNT_SYLLABLE_DIST:
                            failed = True
                        # truncate context a bit since we're just doing couplets. random length from 1 to max desired length for this purpose. 
                        desired_length = random.randint(1, MAX_COUNT_SYLLABLE_INPUT_LENGTH)
                        # desired_length = 10 # useful for debugging
                        inp = inp[-desired_length:]
                        length = len(inp)
                        true_label = 1 if unstripped_future_word.strip()[-1] in PHRASE_ENDS else 0 # common ways to end a phrase
                        classification_label = [-1 for _ in range(length)]
                        classification_label[-1] = true_label # only learn at the last position
                        if not failed and future_word in self.parent.word2index.keys():
                            word_log_prob = math.log(self.parent.vocab[future_word] / self.parent.total_words) # roughly baseline prob of word under noise model
                            future_word = self.parent.word2index[future_word]
                            pad_id = self.parent.gpt_pad_id
                            example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
                            valid = not failed
            else:
                raise NotImplementedError

            self.pos += increment
        return example