Spaces:
Runtime error
Runtime error
File size: 17,564 Bytes
fc5ecba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import os
import random
import time
import pickle
import math
from argparse import ArgumentParser
from typing import Iterable, List, Optional, Tuple
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline, set_seed, GPT2Tokenizer, GPT2Model, MarianTokenizer, MarianMTModel
from torch import Tensor
from data import Dataset
from model import Model
from util import save_checkpoint, ProgressMeter, AverageMeter, num_params
from constants import *
def main(args):
with open(args.dataset_info, 'rb') as rf:
dataset_info = pickle.load(rf)
tokenizer = MarianTokenizer.from_pretrained(args.model_string)
tokenizer.add_special_tokens({'pad_token': PAD_TOKEN})
pad_id = tokenizer.encode(PAD_TOKEN)[0]
model = MarianMTModel.from_pretrained(args.model_string, return_dict=True).to(args.device)
model.eval()
checkpoint = torch.load(args.ckpt, map_location=args.device)
model_args = checkpoint['args']
conditioning_model = Model(model_args, pad_id, len(dataset_info.index2word)) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway
conditioning_model.load_state_dict(checkpoint['state_dict'])
conditioning_model = conditioning_model.to(args.device)
conditioning_model.eval()
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.ckpt, checkpoint['epoch']))
print('num params', num_params(conditioning_model))
while True:
results = predict_formality(model,
tokenizer,
conditioning_model,
[args.input_text],
dataset_info,
precondition_topk=args.precondition_topk,
do_sample=args.do_sample,
length_cutoff=args.length_cutoff,
condition_lambda=args.condition_lambda,
device=args.device)
print(results)
import pdb; pdb.set_trace()
def predict_formality(model, tokenizer, conditioning_model, input_text, dataset_info, precondition_topk=200, do_sample=False, length_cutoff=512, condition_lambda=1.0, device='cuda'):
with torch.no_grad():
batch_size = len(input_text)
# assumes initially all same length.
# encode every x_i i \in [seq] word to respectable embedding
encoded_input = [tokenizer.encode(it, return_tensors='pt').to(device) for it in input_text] # batch x seq
encoded_input = torch.cat(encoded_input, dim=0)
input_ids = torch.LongTensor([[58100]]).to(device)
cur_len = 1
max_length = length_cutoff
min_length = 0
temperature = 1.0
top_k = 50
top_p = 1.0
repetition_penalty = 1.0
no_repeat_ngram_size = 0
bad_words_ids = [[58100]]
pad_token_id = 58100
eos_token_id = 0
effective_batch_size = batch_size
attention_mask = encoded_input.new_ones(encoded_input.shape)
use_cache = True
model_specific_kwargs = {'encoder_outputs': model.get_encoder()(encoded_input, attention_mask=attention_mask)}
output = _generate_no_beam_search(model,
conditioning_model,
condition_lambda,
precondition_topk,
input_ids,
cur_len,
max_length,
min_length,
do_sample,
temperature,
top_k,
top_p,
repetition_penalty,
no_repeat_ngram_size,
bad_words_ids,
pad_token_id,
eos_token_id,
batch_size,
attention_mask,
use_cache,
model_specific_kwargs)
return [tokenizer.decode(s[1:]) for s in output] # 1: to delete the pad token
# hack of code from transformers/generation_utils.py
# to get our conditioning
def postprocess_next_token_scores(
model,
scores,
input_ids,
no_repeat_ngram_size,
bad_words_ids,
cur_len,
min_length,
max_length,
eos_token_id,
repetition_penalty,
batch_size,
num_beams,
):
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
if repetition_penalty != 1.0:
model.enforce_repetition_penalty_(
scores,
batch_size,
num_beams,
input_ids,
repetition_penalty,
)
# set eos token prob to zero if min_length is not reached
if eos_token_id is not None and cur_len < min_length:
scores[:, eos_token_id] = -float("inf")
if no_repeat_ngram_size > 0:
# calculate a list of banned tokens to prevent repetitively generating the same ngrams
num_batch_hypotheses = batch_size * num_beams
# from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
banned_batch_tokens = calc_banned_ngram_tokens(
input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len
)
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
if bad_words_ids is not None:
# Exclude EOS token (already processed)
bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], bad_words_ids))
# calculate a list of banned tokens according to bad words
banned_tokens = calc_banned_bad_words_ids(input_ids.tolist(), bad_words_ids)
# Modify the scores in place by setting the banned tokens logits to `-inf`
set_scores_to_inf_for_banned_tokens(scores, banned_tokens)
return scores
def calc_banned_ngram_tokens(prev_input_ids: Tensor, num_hypos: int, no_repeat_ngram_size: int, cur_len: int) -> None:
"""Copied from fairseq for no_repeat_ngram in beam_search"""
if cur_len + 1 < no_repeat_ngram_size:
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
return [[] for _ in range(num_hypos)]
generated_ngrams = [{} for _ in range(num_hypos)]
for idx in range(num_hypos):
gen_tokens = prev_input_ids[idx].tolist()
generated_ngram = generated_ngrams[idx]
for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]):
prev_ngram_tuple = tuple(ngram[:-1])
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
def _get_generated_ngrams(hypo_idx):
# Before decoding the next token, prevent decoding of ngrams that have already appeared
start_idx = cur_len + 1 - no_repeat_ngram_size
ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist())
return generated_ngrams[hypo_idx].get(ngram_idx, [])
banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
return banned_tokens
def calc_banned_bad_words_ids(prev_input_ids: Iterable[int], bad_words_ids: Iterable[int]) -> Iterable[int]:
banned_tokens = []
def _tokens_match(prev_tokens, tokens):
if len(tokens) == 0:
# if bad word tokens is just one token always ban it
return True
if len(tokens) > len(prev_tokens):
# if bad word tokens are longer than prev tokens they can't be equal
return False
if prev_tokens[-len(tokens) :] == tokens:
# if tokens match
return True
else:
return False
for prev_input_ids_slice in prev_input_ids:
banned_tokens_slice = []
for banned_token_seq in bad_words_ids:
assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format(
bad_words_ids
)
if _tokens_match(prev_input_ids_slice, banned_token_seq[:-1]) is False:
# if tokens do not match continue
continue
banned_tokens_slice.append(banned_token_seq[-1])
banned_tokens.append(banned_tokens_slice)
return banned_tokens
def set_scores_to_inf_for_banned_tokens(scores: torch.Tensor, banned_tokens: List[List[int]]) -> None:
"""Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be
a list of list of banned tokens to ban in the format [[batch index, vocabulary position],...]
Args:
scores: logits distribution of shape (batch size, vocabulary size)
banned_tokens: list of list of tokens to ban of length (batch_size)
"""
banned_mask_list = []
for idx, batch_banned_tokens in enumerate(banned_tokens):
for token in batch_banned_tokens:
banned_mask_list.append([idx, token])
if not banned_mask_list:
return
banned_mask = torch.LongTensor(banned_mask_list)
indices = torch.ones(len(banned_mask))
# A sparse tensor is generated from a list of coordinates: [[0, 1], [0, 2], [2, 0]]. A conversion to dense tensor generates:
# [ 0 1 1 ]
# [ 0 0 0 ]
# [ 1 0 0 ]
banned_mask = torch.sparse.LongTensor(banned_mask.t(), indices, scores.size()).to(scores.device).to_dense().bool()
scores.masked_fill_(banned_mask, -float("inf"))
def _generate_no_beam_search(
model,
conditioning_model,
condition_lambda,
precondition_topk,
input_ids,
cur_len,
max_length,
min_length,
do_sample,
temperature,
top_k,
top_p,
repetition_penalty,
no_repeat_ngram_size,
bad_words_ids,
pad_token_id,
eos_token_id,
batch_size,
attention_mask,
use_cache,
model_kwargs,
):
"""Generate sequences for each example without beam search (num_beams == 1).
All returned sequence are generated independantly.
"""
# length of generated sentences / unfinished sentences
unfinished_sents = input_ids.new(batch_size).fill_(1)
sent_lengths = input_ids.new(batch_size).fill_(max_length)
past = None
while cur_len < max_length:
model_inputs = model.prepare_inputs_for_generation(
input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_kwargs
)
outputs = model(**model_inputs, return_dict=True)
next_token_logits = outputs.logits[:, -1, :]
# scores = model.postprocess_next_token_scores(
# scores=next_token_logits,
# input_ids=input_ids,
# no_repeat_ngram_size=no_repeat_ngram_size,
# bad_words_ids=bad_words_ids,
# cur_len=cur_len,
# min_length=min_length,
# max_length=max_length,
# eos_token_id=eos_token_id,
# repetition_penalty=repetition_penalty,
# batch_size=batch_size,
# num_beams=1,
# )
scores = postprocess_next_token_scores(
model=model,
scores=next_token_logits,
input_ids=input_ids,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
cur_len=cur_len,
min_length=min_length,
max_length=max_length,
eos_token_id=eos_token_id,
repetition_penalty=repetition_penalty,
batch_size=batch_size,
num_beams=1,
)
# if model has past, then set the past variable to speed up decoding
if "past_key_values" in outputs:
past = outputs.past_key_values
elif "mems" in outputs:
past = outputs.mems
top_logits, top_indices = scores.topk(precondition_topk, dim=1) # batch x topk
tplus1_candidates = torch.cat([input_ids.unsqueeze(1).expand(-1, precondition_topk, -1), top_indices.unsqueeze(2)], dim=2)[:, :, 1:] # batch x topk x seq+1, with pad dropped
expanded_lengths = torch.LongTensor([[cur_len for _ in range(precondition_topk)] for _ in range(batch_size)]).to(scores.device)
if condition_lambda == 0:
condition_logits = torch.zeros_like(top_logits).float()
else:
condition_logits = conditioning_model(tplus1_candidates.flatten(0, 1), # batch*topk x seq+1
expanded_lengths.flatten(0, 1), # batch*topk
None,
None,
None)
condition_logits = condition_logits.view(batch_size, precondition_topk, -1)[:, :, -1] # batch x topk of last formality pred
condition_logits = condition_logits - torch.log(1 + torch.exp(condition_logits)) # get correct log probs
# condition_logits = - torch.log(1 + torch.exp(condition_logits)) # for informal
full_logits = top_logits + condition_lambda * condition_logits
if do_sample:
raise NotImplementedError
else:
# Greedy decoding
next_token = top_indices[torch.arange(batch_size).to(top_indices.device), torch.argmax(full_logits, dim=-1)]
# if do_sample:
# # Temperature (higher temperature => more likely to sample low probability tokens)
# if temperature != 1.0:
# scores = scores / temperature
# # Top-p/top-k filtering
# next_token_logscores = top_k_top_p_filtering(scores, top_k=top_k, top_p=top_p)
# # Sample
# probs = F.softmax(next_token_logscores, dim=-1)
# next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
# else:
# # Greedy decoding
# next_token = torch.argmax(next_token_logits, dim=-1)
# update generations and finished sentences
if eos_token_id is not None:
# pad finished sentences if eos_token_id exist
tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents)
else:
tokens_to_add = next_token
# add token and increase length by one
input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
cur_len = cur_len + 1
if eos_token_id is not None:
eos_in_sents = tokens_to_add == eos_token_id
# if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool()
sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len)
# unfinished_sents is set to zero if eos in sentence
unfinished_sents.mul_((~eos_in_sents).long())
# stop when there is a </s> in each sentence, or if we exceed the maximul length
if unfinished_sents.max() == 0:
break
# extend attention_mask for new generated input if only decoder
if model.config.is_encoder_decoder is False:
attention_mask = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
return input_ids
if __name__=='__main__':
parser = ArgumentParser()
# DATA
parser.add_argument('--ckpt', type=str, required=True)
parser.add_argument('--dataset_info', type=str, required=True, help='saved dataset info')
parser.add_argument('--model_string', type=str, default='Helsinki-NLP/opus-mt-es-en')
parser.add_argument('--input_text', type=str, default=None, required=True, help='text to run pred on')
parser.add_argument('--precondition_topk', type=int, default=200, help='consider top k outputs from gpt at each step before conditioning and re-pruning')
parser.add_argument('--do_sample', action='store_true', default=False, help='sample instead of greedy')
parser.add_argument('--condition_lambda', type=float, default=1.0, help='lambda weight on conditioning model')
parser.add_argument('--length_cutoff', type=int, default=512, help='max length')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--device', type=str, default='cuda', choices=['cpu', 'cuda'])
parser.add_argument('--debug', action='store_true', default=False)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
main(args)
|