Spaces:
Runtime error
Runtime error
File size: 10,110 Bytes
fc5ecba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import random
import time
import pickle
import math
from argparse import ArgumentParser
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from data import Dataset
from model import Model
from util import save_checkpoint, ProgressMeter, AverageMeter, num_params, pad_mask
from constants import *
def train(model, dataset, optimizer, criterion, epoch, args, data_start_index):
model.train()
if data_start_index == 0:
dataset.shuffle('train', seed=epoch + args.seed)
if args.epoch_max_len is not None:
data_end_index = min(data_start_index + args.epoch_max_len, len(dataset.splits['train']))
loader = dataset.loader('train', num_workers=args.num_workers, indices=list(range(data_start_index, data_end_index)))
data_start_index = data_end_index if data_end_index < len(dataset.splits['train']) else 0
else:
loader = dataset.loader('train', num_workers=args.num_workers)
loss_meter = AverageMeter('loss', ':6.4f')
total_length = len(loader)
progress = ProgressMeter(total_length, [loss_meter], prefix='Training: ')
for batch_num, batch in enumerate(tqdm(loader, total=len(loader))):
batch = [tensor.to(args.device) for tensor in batch]
inputs, lengths, future_words, log_probs, labels, classification_targets, syllables_to_go, future_word_num_syllables, rhyme_group_index = batch
if args.task not in ['formality', 'iambic']:
if not args.debug and len(inputs) != args.batch_size: # it'll screw up the bias...?
continue
scores = model(inputs, lengths, future_words, log_probs, syllables_to_go, future_word_num_syllables, rhyme_group_index, run_classifier=True)
if args.task == 'formality': # we're learning for all positions at once. scores are batch x seq
expanded_labels = classification_targets.unsqueeze(1).expand(-1, scores.shape[1]) # batch x seq
length_mask = pad_mask(lengths).permute(1, 0) # batch x seq
loss = criterion(scores.flatten()[length_mask.flatten()==1], expanded_labels.flatten().float()[length_mask.flatten()==1])
elif args.task in ['iambic', 'newline']:
use_indices = classification_targets.flatten() != -1
loss = criterion(scores.flatten()[use_indices], classification_targets.flatten().float()[use_indices])
else: # topic, rhyme
loss = criterion(scores.flatten(), labels.flatten().float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_meter.update(loss.detach(), len(labels))
if batch_num % args.train_print_freq == 0:
progress.display(batch_num)
progress.display(total_length)
return data_start_index
def validate(model, dataset, criterion, epoch, args):
model.eval()
random.seed(0)
loader = dataset.loader('val', num_workers=args.num_workers)
loss_meter = AverageMeter('loss', ':6.4f')
total_length = len(loader)
progress = ProgressMeter(total_length, [loss_meter], prefix='Validation: ')
with torch.no_grad():
for batch_num, batch in enumerate(tqdm(loader, total=len(loader))):
batch = [tensor.to(args.device) for tensor in batch]
inputs, lengths, future_words, log_probs, labels, classification_targets, syllables_to_go, future_word_num_syllables, rhyme_group_index = batch
if args.task not in ['formality', 'iambic']: # topic predictor
if not args.debug and len(inputs) != args.batch_size:
continue
scores = model(inputs, lengths, future_words, log_probs, syllables_to_go, future_word_num_syllables, rhyme_group_index, run_classifier=True)
if args.task == 'formality': # we're learning for all positions at once. scores are batch x seq
expanded_labels = classification_targets.unsqueeze(1).expand(-1, scores.shape[1]) # batch x seq
length_mask = pad_mask(lengths).permute(1, 0) # batch x seq
loss = criterion(scores.flatten()[length_mask.flatten()==1], expanded_labels.flatten().float()[length_mask.flatten()==1])
elif args.task in ['iambic', 'newline']:
use_indices = classification_targets.flatten() != -1
loss = criterion(scores.flatten()[use_indices], classification_targets.flatten().float()[use_indices])
else: # topic, rhyme
loss = criterion(scores.flatten(), labels.flatten().float())
loss_meter.update(loss.detach(), len(labels))
if batch_num % args.train_print_freq == 0:
progress.display(batch_num)
progress.display(total_length)
return loss_meter.avg
def main(args):
dataset = Dataset(args)
os.makedirs(args.save_dir, exist_ok=True)
with open(os.path.join(args.save_dir, 'dataset_info'), 'wb') as wf:
pickle.dump(dataset.dataset_info, wf)
if args.task == 'rhyme':
with open(os.path.join(args.save_dir, 'rhyme_info'), 'wb') as wf:
pickle.dump(dataset.rhyme_info, wf)
if args.ckpt:
checkpoint = torch.load(args.ckpt, map_location=args.device)
start_epoch = checkpoint['epoch'] + 1
best_val_metric = checkpoint['best_metric']
model_args = checkpoint['args']
model = Model(model_args, dataset.gpt_pad_id, len(dataset.index2word), rhyme_group_size=len(dataset.index2rhyme_group) if args.task == 'rhyme' else None) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway
model.load_state_dict(checkpoint['state_dict'])
model = model.to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=model_args.lr)
optimizer.load_state_dict(checkpoint['optimizer'])
data_start_index = checkpoint['data_start_index']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.ckpt, checkpoint['epoch']))
# NOTE: just import pdb after loading the model here if you want to play with it, it's easy
# model.eval()
# import pdb; pdb.set_trace()
else:
model = Model(args, dataset.gpt_pad_id, len(dataset.index2word), rhyme_group_size=len(dataset.index2rhyme_group) if args.task == 'rhyme' else None, glove_embeddings=dataset.glove_embeddings)
model = model.to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
best_val_metric = 1e8 # lower is better for BCE
data_start_index = 0
print('num params', num_params(model))
criterion = nn.BCEWithLogitsLoss().to(args.device)
if args.evaluate:
epoch = 0
validate(model, dataset, criterion, epoch, args)
return
for epoch in range(args.epochs):
print("TRAINING: Epoch {} at {}".format(epoch, time.ctime()))
data_start_index = train(model, dataset, optimizer, criterion, epoch, args, data_start_index)
if epoch % args.validation_freq == 0:
print("VALIDATION: Epoch {} at {}".format(epoch, time.ctime()))
metric = validate(model, dataset, criterion, epoch, args)
if not args.debug:
if metric < best_val_metric:
print('new best val metric', metric)
best_val_metric = metric
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'best_metric': best_val_metric,
'optimizer': optimizer.state_dict(),
'data_start_index': data_start_index,
'args': args
}, os.path.join(args.save_dir, 'model_best.pth.tar'))
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'best_metric': metric,
'optimizer': optimizer.state_dict(),
'data_start_index': data_start_index,
'args': args
}, os.path.join(args.save_dir, 'model_epoch' + str(epoch) + '.pth.tar'))
if __name__=='__main__':
parser = ArgumentParser()
# DATA
parser.add_argument('--task', type=str, required=True, choices=['iambic', 'rhyme', 'newline', 'topic', 'formality', 'clickbait'])
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--glove_file', type=str, help='glove embedding init, for topic task')
# SAVE/LOAD
parser.add_argument('--save_dir', type=str, required=True, help='where to save ckpts')
parser.add_argument('--ckpt', type=str, default=None, help='load ckpt from file if given')
parser.add_argument('--dataset_info', type=str, help='saved dataset info')
parser.add_argument('--rhyme_info', type=str, help='saved dataset rhyme info, for a ckpt with task==rhyme')
# TRAINING
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--epoch_max_len', type=int, default=None, help='max batches per epoch if set, for more frequent validation')
parser.add_argument('--validation_freq', type=int, default=1, help='validate every X epochs')
parser.add_argument('--lr', type=float, default=1e-3, help='Adam learning rate')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--device', type=str, default='cuda', choices=['cpu', 'cuda'])
parser.add_argument('--num_workers', type=int, default=20, help='num workers for data loader')
parser.add_argument('--evaluate', action='store_true', default=False)
parser.add_argument('--debug', action='store_true', default=False)
# PRINTING
parser.add_argument('--train_print_freq', type=int, default=100, help='how often to print metrics (every X batches)')
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.evaluate:
assert args.ckpt is not None
main(args) |