File size: 11,542 Bytes
fc5ecba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import math

import torch
import torch.nn as nn 
import torch.nn.functional as F 
from torch.nn.utils.rnn import pad_sequence, pad_packed_sequence, pack_padded_sequence
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline, set_seed, GPT2Tokenizer, GPT2Model, GPT2LMHeadModel, GPT2Config, GPT2ForSequenceClassification, GPT2LMHeadModel, MarianTokenizer

from constants import *
from util import pad_mask
from clickbait_classifier import BertClickbaitClassifier, ClickbaitConfig

class Model(nn.Module):
    def __init__(self, args, gpt_pad_id, vocab_size, rhyme_group_size=None, glove_embeddings=None, verbose=True):
        super(Model, self).__init__()

#         self.topic = args.task == 'topic'
        self.formality = args.task == 'formality'
        self.iambic = args.task == 'iambic'
        self.rhyme = args.task == 'rhyme'
        self.newline = args.task == 'newline'
        self.clickbait = args.task == 'clickbait'
#         if self.topic:
#             self.gpt_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=gpt_pad_id) # these are subwords, not words
#             if glove_embeddings is None:
#                 if verbose:
#                     print('initializing word embeddings from scratch')
#                 self.word_embed = nn.Embedding(vocab_size, GLOVE_DIM, padding_idx=0)
#             else:
#                 if verbose:
#                     print('initializing word embeddings from glove')
#                 self.word_embed = nn.Embedding.from_pretrained(glove_embeddings, padding_idx=0)
#             self.rnn = nn.LSTM(HIDDEN_DIM, RNN_DIM, num_layers=3, bidirectional=True)
#             self.attention_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
#             large_hidden_dim = HIDDEN_DIM
#             self.embed_key_linear = nn.Linear(large_hidden_dim, HIDDEN_DIM)
#             self.attention_value_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
#             self.out_embed_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
#             self.out_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
#             self.out_linear2 = nn.Linear(HIDDEN_DIM + large_hidden_dim, HIDDEN_DIM)
#             self.out_linear3 = nn.Linear(HIDDEN_DIM, 1)
#             self.nonlinear = nn.ReLU()
#         elif self.formality:
        if self.formality:
            self.marian_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=0) # 0 in marian is ''
            self.rnn = nn.LSTM(HIDDEN_DIM, HIDDEN_DIM, num_layers=3, bidirectional=False, dropout=0.5) # want it to be causal so we can learn all positions
            self.out_linear = nn.Linear(HIDDEN_DIM, 1)
        elif self.iambic:
            self.gpt_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=gpt_pad_id)
            self.rnn = nn.LSTM(HIDDEN_DIM, HIDDEN_DIM, num_layers=3, bidirectional=False, dropout=0) # want it to be causal so we can learn all positions
            self.out_linear = nn.Linear(HIDDEN_DIM, 1)
        elif self.rhyme:
            self.gpt_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=gpt_pad_id) # these are subwords, not words
            self.word_embed = nn.Embedding(rhyme_group_size+1, GLOVE_DIM, padding_idx=0) # this embedding for future words will actually embed the rhyme group idx
            self.rnn = nn.LSTM(HIDDEN_DIM, RNN_DIM, num_layers=3, bidirectional=True)
            self.attention_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
            large_hidden_dim = HIDDEN_DIM + COUNT_SYLLABLE_DIM
            self.embed_key_linear = nn.Linear(large_hidden_dim, HIDDEN_DIM)
            self.attention_value_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
            self.out_embed_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
            self.out_linear = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
            self.out_linear2 = nn.Linear(HIDDEN_DIM + large_hidden_dim, HIDDEN_DIM)
            self.out_linear3 = nn.Linear(HIDDEN_DIM, 1)
            self.count_syllable_embed = nn.Embedding(MAX_COUNT_SYLLABLE_DIST+1, COUNT_SYLLABLE_DIM)
            self.nonlinear = nn.ReLU()
        elif self.newline:
            self.gpt_embed = nn.Embedding(gpt_pad_id + 1, HIDDEN_DIM, padding_idx=gpt_pad_id) # these are subwords, not words
            self.rnn = nn.LSTM(HIDDEN_DIM, HIDDEN_DIM, num_layers=3, bidirectional=False)
            self.count_syllable_embed = nn.Embedding(MAX_COUNT_SYLLABLE_DIST+1, COUNT_SYLLABLE_DIM)
            self.out_linear = nn.Linear(HIDDEN_DIM + COUNT_SYLLABLE_DIM, HIDDEN_DIM)
            self.out_linear2 = nn.Linear(HIDDEN_DIM, HIDDEN_DIM)
            self.out_linear3 = nn.Linear(HIDDEN_DIM, 1)
            self.nonlinear = nn.ReLU()
        elif self.clickbait:
            # mpnet_config = ClickbaitConfig(
            #     model_type="mpnet",
            #     pretrained_model="sentence-transformers/all-mpnet-base-v2",
            #     num_labels=1,
            #     dropout=0.2,
            #     inner_dim1=256,
            #     inner_dim2=32, 
            #     max_length=25,
            #     load_pretrained=True,
            #     freeze_bert=False,
            # )
            #TODO add a checkpoint to Classifier
            # print('add a checkpoint to Classifier')
            checkpoint = args.checkpoint #'ckpt/clickbait_classifier/checkpoint-1464'
            # self.classifier = BertClickbaitClassifier(config=mpnet_config).to(torch.device(args.device))
            self.classifier = BertClickbaitClassifier.from_pretrained(checkpoint).to(torch.device(args.device))
        else:
            raise NotImplementedError # TODO honestly this can/should be refactored into different models


    def forward(self, inputs, lengths=None, future_words=None, log_probs=None, syllables_to_go=None, future_word_num_syllables=None, rhyme_group_index=None, run_classifier=False, attention_mask=None):
        """
        inputs: token ids, batch x seq, right-padded with 0s
        lengths: lengths of inputs; batch
        future_words: batch x N words to check if not predict next token, else batch
        log_probs: N
        syllables_to_go: batch
        """
#         if self.topic:
#             inputs = self.gpt_embed(inputs) # batch x seq x 300
#             inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
#             rnn_output, _ = self.rnn(inputs)
#             rnn_output, _ = pad_packed_sequence(rnn_output)
#             rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
#             hidden = rnn_output
#             attention_mask = pad_mask(lengths).permute(1, 0) # batch x seq
#             embed = self.word_embed(future_words) # batch x N x 300
#             embed_query = self.embed_key_linear(embed)
#             attention_tensor = self.attention_linear(hidden).unsqueeze(2) * embed_query.unsqueeze(1) # batch x seq x N x 300
#             attention_weights = F.softmax(attention_tensor.sum(dim=3), dim=1) # batch x seq x N
#             attention_weights = attention_weights * attention_mask.unsqueeze(2)
#             hidden = self.attention_value_linear(hidden)
#             weighted_hidden = (hidden.unsqueeze(2) * attention_weights.unsqueeze(3)).sum(dim=1) # batch x seq x N x 768 -> batch x N x 768
#             unnormalized_scores = (self.out_linear(weighted_hidden) * self.out_embed_linear(embed)) # batch x N x 300
#             unnormalized_scores = torch.cat([unnormalized_scores, embed], dim=2)
#             unnormalized_scores = self.nonlinear(self.out_linear2(self.nonlinear(unnormalized_scores)))
#             unnormalized_scores = self.out_linear3(unnormalized_scores)
#             scores = unnormalized_scores.squeeze(2) - log_probs.unsqueeze(0) 
#             return scores # batch x N of normalized scores or batch x 
#         elif self.formality:
        if self.formality:
            inputs = self.marian_embed(inputs)
            inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
            rnn_output, _ = self.rnn(inputs)
            rnn_output, _ = pad_packed_sequence(rnn_output)
            rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
            return self.out_linear(rnn_output).squeeze(2)
        elif self.iambic:
            inputs = self.gpt_embed(inputs)
            inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
            rnn_output, _ = self.rnn(inputs)
            rnn_output, _ = pad_packed_sequence(rnn_output)
            rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
            return self.out_linear(rnn_output).squeeze(2)
        elif self.rhyme:
            inputs = self.gpt_embed(inputs) # batch x seq x 300
            inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
            rnn_output, _ = self.rnn(inputs)
            rnn_output, _ = pad_packed_sequence(rnn_output)
            rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
            hidden = rnn_output
            attention_mask = pad_mask(lengths).permute(1, 0) # batch x seq
            embed = self.word_embed(future_words) # batch x N x 300
            embedded_syllables_to_go = self.count_syllable_embed(syllables_to_go).unsqueeze(1).expand(-1, embed.shape[1], -1) # batch x N x 100
            auxiliary_embed = embedded_syllables_to_go
            embed_query = self.embed_key_linear(torch.cat([embed, auxiliary_embed], dim=2))
            attention_tensor = self.attention_linear(hidden).unsqueeze(2) * embed_query.unsqueeze(1) # batch x seq x N x 300
            attention_weights = F.softmax(attention_tensor.sum(dim=3), dim=1) # batch x seq x N
            attention_weights = attention_weights * attention_mask.unsqueeze(2)
            hidden = self.attention_value_linear(hidden)
            weighted_hidden = (hidden.unsqueeze(2) * attention_weights.unsqueeze(3)).sum(dim=1) # batch x seq x N x 768 -> batch x N x 768
            unnormalized_scores = (self.out_linear(weighted_hidden) * self.out_embed_linear(embed)) # batch x N x 300
            unnormalized_scores = torch.cat([unnormalized_scores, embed, auxiliary_embed], dim=2)
            unnormalized_scores = self.nonlinear(self.out_linear2(self.nonlinear(unnormalized_scores)))
            unnormalized_scores = self.out_linear3(unnormalized_scores)
            scores = unnormalized_scores.squeeze(2) - log_probs.unsqueeze(0) 
            return scores # batch x N of normalized scores or batch x 
        elif self.newline:
            inputs = self.gpt_embed(inputs) # batch x seq x 300
            inputs = pack_padded_sequence(inputs.permute(1, 0, 2), lengths.cpu(), enforce_sorted=False)
            rnn_output, _ = self.rnn(inputs)
            rnn_output, _ = pad_packed_sequence(rnn_output)
            rnn_output = rnn_output.permute(1, 0, 2) # batch x seq x 300
            hidden = torch.cat([rnn_output, self.count_syllable_embed(syllables_to_go).unsqueeze(1).expand(-1, rnn_output.shape[1], -1)], dim=2)
            return self.out_linear3(self.nonlinear(self.out_linear2(self.nonlinear(self.out_linear(hidden))))).squeeze(2)
        elif self.clickbait:

            input_ids = torch.tensor(inputs)
            classifer_output = self.classifier(input_ids = input_ids, attention_mask = attention_mask).logits

            classifer_output = classifer_output[None,:,:] # batch x seq x 300
            # return self.out_linear(rnn_output).squeeze(2)
            return classifer_output.squeeze(2)

        else: 
            raise NotImplementedError