clickbaitonator / fudge /eval_poetry_metrics.py
Dusan Svilarkovic
Try it
a10a948
raw
history blame
6.41 kB
from argparse import ArgumentParser
import math
import string
from tqdm import tqdm
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelWithLMHead, AutoModelForSequenceClassification
from poetry_util import is_iambic, perfect_rhyme_end, count_syllables
from constants import *
def conditional_perplexity(prefix, pred, tokenizer, model, device='cuda', sep_losses=False):
# calculate perplexity on pred only, conditioned on prefix
sentence = prefix + pred
sos_token = tokenizer.decode([0])
prefix_tensor_input = tokenizer.encode(sos_token + prefix.replace(EOT_TOKEN, ' ').strip(), return_tensors='pt').to(device)
full_tensor_input = tokenizer.encode(sos_token + sentence.replace(EOT_TOKEN, ' ').strip(), return_tensors='pt').to(device)
if sep_losses:
prefix_loss = model(prefix_tensor_input, labels=prefix_tensor_input)[0].sum()
full_loss = model(full_tensor_input, labels=full_tensor_input)[0].sum()
else:
prefix_loss = model(prefix_tensor_input, labels=prefix_tensor_input)[0] * (prefix_tensor_input.shape[1]-1) # neg log prob of prefix
full_loss = model(full_tensor_input, labels=full_tensor_input)[0] * (full_tensor_input.shape[1]-1) # neg log prob of full seq
pred_loss = full_loss - prefix_loss # neg log prob of preds given prefix
avg_pred_loss = pred_loss / (full_tensor_input.shape[1] - prefix_tensor_input.shape[1])
return math.exp(avg_pred_loss.item())
def grammaticality(sentences, tokenizer, model, device='cuda'):
with torch.no_grad():
total_good = 0
for sent in tqdm(sentences, total=len(sentences)):
good_prob = F.softmax(model(tokenizer.encode(sent, return_tensors='pt').to(device))[0].flatten(), dim=0)[1]
total_good += good_prob
return total_good / len(sentences) # avg probability of grammaticality according to model
def distinctness(sentences):
d1 = set()
d2 = set()
d3 = set()
total_words = 0
for sentence in sentences:
o = sentence.split(' ')
total_words += len(o)
d1.update(o)
for i in range(len(o) - 1):
d2.add(o[i] + '_' + o[i+1])
for i in range(len(o) - 2):
d3.add(o[i] + '_' + o[i+1] + '_' + o[i+2])
return len(d1) / total_words, len(d2) / total_words, len(d3) / total_words
if __name__=='__main__':
parser = ArgumentParser()
parser.add_argument('--pred_file', type=str)
parser.add_argument('--prefix_file', type=str)
parser.add_argument('--device', type=str, default='cuda', choices=['cpu', 'cuda'])
args = parser.parse_args()
preds = []
with open(args.pred_file, 'r') as rf:
for line in rf:
preds.append(line[:-1]) # drop \n but not beginning spaces if any
prefixes = []
with open(args.prefix_file, 'r') as rf:
for line in rf:
prefixes.append(line.strip())
assert len(prefixes) == len(preds)
rhymes = 0
iambic = 0
ten_syllables = 0
end = 0
diff_rhymes = 0
all_success = 0
total = len(prefixes)
for prefix, pred in zip(prefixes, preds):
if is_iambic(pred):
iambic += 1
if perfect_rhyme_end(prefix, pred):
rhymes += 1
if prefix.split()[-1].strip(string.punctuation) != pred.split()[-1].strip(string.punctuation):
diff_rhymes += 1
if count_syllables(pred) == 10:
ten_syllables += 1
if pred.strip()[-1] in PHRASE_ENDS:
end += 1
if is_iambic(pred) and perfect_rhyme_end(prefix, pred) and count_syllables(pred) == 10 and pred.strip()[-1] in PHRASE_ENDS:
all_success += 1
print('iambic', iambic, 'out of', total, ', frac', iambic / total)
print('rhymes', rhymes, 'out of', total, ', frac', rhymes / total)
print('end sentence', end, 'out of', total, ', frac', end / total)
print('10 syllables', ten_syllables, 'out of', total, ', frac', ten_syllables / total)
print('all success', all_success, 'out of', total, ', frac', all_success / total)
print('rhymes with diff word', diff_rhymes, 'out of', total, ', frac', diff_rhymes / total)
print('distinctness', distinctness(preds))
grammar_tokenizer = AutoTokenizer.from_pretrained('textattack/roberta-base-CoLA')
grammar_model = AutoModelForSequenceClassification.from_pretrained('textattack/roberta-base-CoLA').to(args.device)
grammar_model.eval()
print('grammaticality', grammaticality(preds, grammar_tokenizer, grammar_model, device=args.device))
perplexities = []
eval_tokenizer = AutoTokenizer.from_pretrained('transfo-xl-wt103')
eval_model = AutoModelWithLMHead.from_pretrained('transfo-xl-wt103').to(args.device)
eval_model.eval()
for prefix, pred in zip(prefixes, preds):
perplexities.append(conditional_perplexity(prefix, pred, eval_tokenizer, eval_model, device=args.device, sep_losses=True))
print('transformer xl perplexity', np.mean(perplexities), '+/-', np.std(perplexities))
perplexities = []
eval_tokenizer = AutoTokenizer.from_pretrained('openai-gpt')
eval_model = AutoModelWithLMHead.from_pretrained('openai-gpt').to(args.device)
eval_model.eval()
for prefix, pred in zip(prefixes, preds):
perplexities.append(conditional_perplexity(prefix, pred, eval_tokenizer, eval_model, device=args.device))
print('gpt perplexity', np.mean(perplexities), '+/-', np.std(perplexities))
# NOTE: uncomment this section with the path to the Shakespeare-finetuned GPT to evaluate this metric. it's in ckpt/poetry/gpt_finetune_shakespeare.pth.tar.
# eval_tokenizer = AutoTokenizer.from_pretrained('openai-gpt')
# eval_model = AutoModelWithLMHead.from_pretrained('openai-gpt').to(args.device)
# checkpoint = torch.load('***PATH_TO_SHAKESPEARE_FINETUNED_GPT***', map_location=args.device)
# mod_dict = {}
# for key in checkpoint['state_dict']:
# mod_dict[key.replace('classifier.', '')] = checkpoint['state_dict'][key]
# eval_model.load_state_dict(mod_dict)
# eval_model.eval()
# perplexities = []
# for prefix, pred in zip(prefixes, preds):
# perplexities.append(conditional_perplexity(prefix, pred, eval_tokenizer, eval_model, device=args.device))
# print('shakespeare finetuned perplexity', np.mean(perplexities), '+/-', np.std(perplexities))