Spaces:
Runtime error
Runtime error
import torch | |
from transformers import BertModel, BertConfig, PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig | |
from typing import List, Optional, Tuple, Union | |
from transformers.modeling_outputs import TokenClassifierOutput,SequenceClassifierOutput | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, BCELoss | |
import torch.nn as nn | |
# from modeling_mpnet import MPNetModel, MPnetConfig | |
class ClickbaitConfig(PretrainedConfig): | |
def __init__( | |
self, | |
model_type: str = "bert", | |
pretrained_model: str = "bert-base-uncased", | |
num_labels: int = 1, | |
dropout: float = 0.1, | |
inner_dim1: int = 256, | |
inner_dim2: int = 32, | |
max_length: int = 512, | |
load_pretrained: bool = True, | |
freeze_bert: bool = True, | |
**kwargs | |
): | |
super(ClickbaitConfig, self).__init__(num_labels=num_labels, **kwargs) | |
self.model_type = model_type | |
self.pretrained_model = pretrained_model | |
self.dropout = dropout | |
self.inner_dim1 = inner_dim1 | |
self.inner_dim2 = inner_dim2 | |
self.max_length = max_length | |
self.load_pretrained = load_pretrained | |
self.freeze_bert = freeze_bert | |
class BertClickbaitClassifier(PreTrainedModel): | |
""" | |
Taken and extended from BertforSequenceClassification : https://github.com/huggingface/transformers/blob/v4.19.2/src/transformers/models/bert/modeling_bert.py#L1508 | |
""" | |
config_class = ClickbaitConfig | |
def __init__(self, config: ClickbaitConfig): | |
super(BertClickbaitClassifier, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
# self.bert_config = BertConfig.from_pretrained(config.pretrained_model) | |
self.bert_config = AutoConfig.from_pretrained(config.pretrained_model) | |
# self.bert = BertModel(self.bert_config) | |
self.bert = AutoModel.from_pretrained(config.pretrained_model, config=self.bert_config) | |
# self.bert = SentenceTransformer(config.pretrained_model, config=self.bert_config) | |
# self.bert = MPNetModel(config.pretrained_model, config=self.bert_config) | |
if config.load_pretrained: | |
print("Load pretrained weights from {}".format(config.pretrained_model)) | |
self.bert = self.bert.from_pretrained(config.pretrained_model) | |
if config.freeze_bert: | |
print("Freeze weights in the BERT model. Just the classifier will be trained") | |
for param in self.bert.parameters(): | |
param.requires_grad = False | |
self.linear_1 = nn.Linear(self.bert.config.hidden_size, config.inner_dim1) | |
self.dropout_1 = nn.Dropout(config.dropout) | |
self.relu_1 = nn.ReLU() | |
self.dropout_2 = nn.Dropout(config.dropout) | |
self.linear_2 = nn.Linear(config.inner_dim1, config.inner_dim2) | |
self.relu_2 = nn.ReLU() | |
self.dropout_3 = nn.Dropout(config.dropout) | |
self.classifier = nn.Linear(config.inner_dim2, config.num_labels) | |
self.sigmoid = nn.Sigmoid() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
output = outputs[0][:,0,:] | |
x = self.dropout_1(output) | |
x = self.linear_1(x) | |
x = self.relu_1(x) | |
x = self.dropout_2(x) | |
x = self.linear_2(x) | |
x = self.relu_2(x) | |
x = self.dropout_3(x) | |
logits = self.classifier(x) | |
logits = self.sigmoid(logits) | |
loss = None | |
if labels is not None: | |
loss_fct = BCELoss(weight=WEIGHT) | |
labels = 1.0*labels | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits | |
) |