Spaces:
Paused
Paused
File size: 2,945 Bytes
14e2513 216b96d 6cae924 14e2513 216b96d f9fa47c 216b96d 6cae924 216b96d f9fa47c 6cae924 f9fa47c 6cae924 216b96d 6cae924 216b96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import os
from vllm import LLM, SamplingParams
import gradio as gr
from PIL import Image
from io import BytesIO
import base64
import requests
from huggingface_hub import login
import os
login(os.environ["HF_TOKEN"])
repo_id = "mistral-community/pixtral-12b-240910" #Replace to the model you would like to use
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
max_tokens_per_img = 4096
max_img_per_msg = 5
def encode_image(image: Image.Image, image_format="PNG") -> str:
im_file = BytesIO()
image.save(im_file, format=image_format)
im_bytes = im_file.getvalue()
im_64 = base64.b64encode(im_bytes).decode("utf-8")
return im_64
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
# tokenize image urls and text
llm = LLM(model="mistralai/Pixtral-12B-2409",
tokenizer_mode="mistral",
max_model_len=65536,
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
limit_mm_per_prompt={"image": max_img_per_msg}) # Name or path of your model
image = Image.open(BytesIO(requests.get(image_url).content))
image = image.resize((3844, 2408))
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
messages = [
{
"role": "user",
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}]
},
]
outputs = llm.chat(messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
return outputs
example_images = ["https://picsum.photos/id/237/200/300"]
example_prompts = ["What do you see in this image?"]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
)
image_url = gr.Text(
label="Image URL",
show_label=False,
max_lines=1,
placeholder="Enter your image URL",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Textbox(
show_label=False
)
gr.Examples(
examples=example_images,
inputs=[image_url]
)
gr.Examples(
examples=example_prompts,
inputs=[prompt]
)
gr.on(
triggers=[run_button.click, image_url.submit, prompt.submit],
fn=infer,
inputs=[image_url, prompt],
outputs=[result]
)
demo.queue().launch() |