Spaces:
Running
Running
File size: 5,173 Bytes
0702f61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from __future__ import annotations
import numpy as np
import pandas as pd
import requests
from huggingface_hub.hf_api import SpaceInfo
class PaperList:
def __init__(self):
self.organization_name = 'ECCV2022'
self.table = pd.read_csv('papers.csv')
self._preprcess_table()
self.table_header = '''
<tr>
<td width="50%">Paper Title</td>
<td width="22%">Authors</td>
<td width="4%">pdf</td>
<td width="4%">Session</td>
<td width="4%">arXiv</td>
<td width="4%">GitHub</td>
<td width="4%">HF Spaces</td>
<td width="4%">HF Models</td>
<td width="4%">HF Datasets</td>
</tr>'''
@staticmethod
def load_space_info(author: str) -> list[SpaceInfo]:
path = 'https://huggingface.co/api/spaces'
r = requests.get(path, params={'author': author})
d = r.json()
return [SpaceInfo(**x) for x in d]
def add_spaces_to_table(self, organization_name: str,
df: pd.DataFrame) -> pd.DataFrame:
spaces = self.load_space_info(organization_name)
name2space = {
s.id.split('/')[1].lower(): f'https://huggingface.co/spaces/{s.id}'
for s in spaces
}
df['hf_space'] = df.loc[:, ['hf_space', 'github']].apply(
lambda x: x[0] if isinstance(x[0], str) else name2space.get(
x[1].split('/')[-1].lower()
if isinstance(x[1], str) else '', np.nan),
axis=1)
return df
def _preprcess_table(self) -> None:
self.table = self.add_spaces_to_table(self.organization_name,
self.table)
self.table['title_lowercase'] = self.table.title.str.lower()
rows = []
for row in self.table.itertuples():
paper = f'<a href="{row.url}" target="_blank">{row.title}</a>' if isinstance(
row.url, str) else row.title
pdf = f'<a href="{row.pdf}" target="_blank">pdf</a>' if isinstance(
row.pdf, str) else ''
arxiv = f'<a href="{row.arxiv}" target="_blank">arXiv</a>' if isinstance(
row.arxiv, str) else ''
github = f'<a href="{row.github}" target="_blank">GitHub</a>' if isinstance(
row.github, str) else ''
hf_space = f'<a href="{row.hf_space}" target="_blank">Space</a>' if isinstance(
row.hf_space, str) else ''
hf_model = f'<a href="{row.hf_model}" target="_blank">Model</a>' if isinstance(
row.hf_model, str) else ''
hf_dataset = f'<a href="{row.hf_dataset}" target="_blank">Dataset</a>' if isinstance(
row.hf_dataset, str) else ''
row = f'''
<tr>
<td>{paper}</td>
<td>{row.authors}</td>
<td>{pdf}</td>
<td>{row.session}</td>
<td>{arxiv}</td>
<td>{github}</td>
<td>{hf_space}</td>
<td>{hf_model}</td>
<td>{hf_dataset}</td>
</tr>'''
rows.append(row)
self.table['html_table_content'] = rows
def render(self, search_query: str, case_sensitive: bool,
filter_names: list[str],
paper_sessions: list[str]) -> tuple[int, str]:
df = self.add_spaces_to_table(self.organization_name, self.table)
if search_query:
if case_sensitive:
df = df[df.title.str.contains(search_query)]
else:
df = df[df.title_lowercase.str.contains(search_query.lower())]
has_arxiv = 'arXiv' in filter_names
has_github = 'GitHub' in filter_names
has_hf_space = 'HF Space' in filter_names
has_hf_model = 'HF Model' in filter_names
has_hf_dataset = 'HF Dataset' in filter_names
df = self.filter_table(df, has_arxiv, has_github, has_hf_space,
has_hf_model, has_hf_dataset, paper_sessions)
return len(df), self.to_html(df, self.table_header)
@staticmethod
def filter_table(df: pd.DataFrame, has_arxiv: bool, has_github: bool,
has_hf_space: bool, has_hf_model: bool,
has_hf_dataset: bool,
paper_sessions: list[str]) -> pd.DataFrame:
if has_arxiv:
df = df[~df.arxiv.isna()]
if has_github:
df = df[~df.github.isna()]
if has_hf_space:
df = df[~df.hf_space.isna()]
if has_hf_model:
df = df[~df.hf_model.isna()]
if has_hf_dataset:
df = df[~df.hf_dataset.isna()]
df = df[df.session.isin(set(paper_sessions))]
return df
@staticmethod
def to_html(df: pd.DataFrame, table_header: str) -> str:
table_data = ''.join(df.html_table_content)
html = f'''
<table>
{table_header}
{table_data}
</table>'''
return html
|