mmmapms's picture
Update app.py
ac16c70 verified
raw
history blame
31.1 kB
import requests
import pandas as pd
from io import StringIO
import streamlit as st
import os
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
import numpy as np
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.stattools import acf
from statsmodels.graphics.tsaplots import plot_acf
import matplotlib.pyplot as plt
from datetime import datetime
import folium
import seaborn as sns
from streamlit_folium import st_folium
from datetime import datetime, timedelta
from entsoe.geo import load_zones
from branca.colormap import LinearColormap
import branca
def get_current_time():
now = datetime.now()
current_hour = now.hour
current_minute = now.minute
# Return the hour and a boolean indicating if it is after the 10th minute
return current_hour, current_minute >= 10
##GET ALL FILES FROM GITHUB
@st.cache_data(show_spinner=False)
def load_GitHub(github_token, file_name, hour, after_10_min):
url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}'
headers = {'Authorization': f'token {github_token}'}
response = requests.get(url, headers=headers)
if response.status_code == 200:
csv_content = StringIO(response.text)
df = pd.read_csv(csv_content)
if 'Date' in df.columns:
df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime
df.set_index('Date', inplace=True) # Set 'Date' column as the index
#df.to_csv(file_name)
return df
else:
print(f"Failed to download {file_name}. Status code: {response.status_code}")
return None
@st.cache_data(show_spinner=False)
def load_forecast(github_token, hour, after_10_min):
predictions_dict = {}
for hour in range(24):
file_name = f'Predictions_{hour}h.csv'
df = load_GitHub(github_token, file_name, hour, after_10_min)
if df is not None:
predictions_dict[file_name] = df
return predictions_dict
def convert_European_time(data, time_zone):
data.index = pd.to_datetime(data.index, utc=True)
data.index = data.index.tz_convert(time_zone)
data.index = data.index.tz_localize(None)
return data
def simplify_model_names(df):
# Define the mapping of complex names to simpler ones
replacements = {
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
r'\.Naive\.\dD': '.Naive',
}
# Apply the replacements
for original, simplified in replacements.items():
df.columns = df.columns.str.replace(original, simplified, regex=True)
return df
def simplify_model_names_in_index(df):
# Define the mapping of complex names to simpler ones
replacements = {
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
r'\.Naive\.\dD': '.Naive',
}
# Apply the replacements to the DataFrame index
for original, simplified in replacements.items():
df.index = df.index.str.replace(original, simplified, regex=True)
return df
github_token = st.secrets["GitHub_Token_KUL_Margarida"]
if github_token:
hour, after_10_min=get_current_time()
forecast_dict = load_forecast(github_token, hour, after_10_min)
historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv', hour, after_10_min)
Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv', hour, after_10_min)
Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv', hour, after_10_min)
Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv', hour, after_10_min)
Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv', hour, after_10_min)
Data_PT=load_GitHub(github_token, 'PT_Entsoe_UTC.csv', hour, after_10_min)
Data_ES=load_GitHub(github_token, 'ES_Entsoe_UTC.csv', hour, after_10_min)
Data_AT=load_GitHub(github_token, 'AT_Entsoe_UTC.csv', hour, after_10_min)
Data_IT_CALA=load_GitHub(github_token, 'IT_CALA_Entsoe_UTC.csv', hour, after_10_min)
Data_IT_CNOR=load_GitHub(github_token, 'IT_CNOR_Entsoe_UTC.csv', hour, after_10_min)
Data_IT_CSUD=load_GitHub(github_token, 'IT_CSUD_Entsoe_UTC.csv', hour, after_10_min)
Data_IT_NORD=load_GitHub(github_token, 'IT_NORD_Entsoe_UTC.csv', hour, after_10_min)
Data_IT_SICI=load_GitHub(github_token, 'IT_SICI_Entsoe_UTC.csv', hour, after_10_min)
Data_IT_SUD=load_GitHub(github_token, 'IT_SUD_Entsoe_UTC.csv', hour, after_10_min)
Data_DK_1=load_GitHub(github_token, 'DK_1_Entsoe_UTC.csv', hour, after_10_min)
Data_DK_2=load_GitHub(github_token, 'DK_2_Entsoe_UTC.csv', hour, after_10_min)
Data_BE=convert_European_time(Data_BE, 'Europe/Brussels')
Data_FR=convert_European_time(Data_FR, 'Europe/Paris')
Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam')
Data_DE=convert_European_time(Data_DE, 'Europe/Berlin')
Data_PT=convert_European_time(Data_PT, 'Europe/Lisbon')
Data_ES=convert_European_time(Data_ES, 'Europe/Madrid')
Data_AT=convert_European_time(Data_AT, 'Europe/Vienna')
Data_IT_CALA = convert_European_time(Data_IT_CALA, 'Europe/Rome')
Data_IT_CNOR = convert_European_time(Data_IT_CNOR, 'Europe/Rome')
Data_IT_CSUD = convert_European_time(Data_IT_CSUD, 'Europe/Rome')
Data_IT_NORD = convert_European_time(Data_IT_NORD, 'Europe/Rome')
Data_IT_SICI = convert_European_time(Data_IT_SICI, 'Europe/Rome')
Data_IT_SUD = convert_European_time(Data_IT_SUD, 'Europe/Rome')
Data_DK_1 = convert_European_time(Data_DK_1, 'Europe/Copenhagen')
Data_DK_2 = convert_European_time(Data_DK_2, 'Europe/Copenhagen')
else:
print("Please enter your GitHub Personal Access Token to proceed.")
col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs
with col1:
st.title("Transparency++")
with col2:
upper_space = col2.empty()
upper_space = col2.empty()
col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images
with col2_1:
st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed
with col2_2:
st.image("energyville_logo.png", width=100)
st.write("**Evaluate and analyze ENTSO-E Transparency Platform data quality, forecast accuracy, and energy trends for Portugal, Spain, Belgium, France, Germany-Luxembourg, Austria, the Netherlands, Italy and Denmark.**")
upper_space.markdown("""
 
 
""", unsafe_allow_html=True)
countries = {
'Overall': 'Overall',
'Austria': 'AT',
'Belgium': 'BE',
'Denmark 1': 'DK_1',
'Denmark 2': 'DK_2',
'France': 'FR',
'Germany-Luxembourg': 'DE_LU',
'Italy Calabria': 'IT_CALA',
'Italy Central North': 'IT_CNOR',
'Italy Central South': 'IT_CSUD',
'Italy North': 'IT_NORD',
'Italy Sicily': 'IT_SICI',
'Italy South': 'IT_SUD',
'Netherlands': 'NL',
'Portugal': 'PT',
'Spain': 'ES',
}
data_dict = {
'BE': Data_BE,
'FR': Data_FR,
'DE_LU': Data_DE,
'NL': Data_NL,
'PT': Data_PT,
'AT': Data_AT,
'ES': Data_ES,
'IT_CALA': Data_IT_CALA,
'IT_CNOR': Data_IT_CNOR,
'IT_CSUD': Data_IT_CSUD,
'IT_NORD': Data_IT_NORD,
'IT_SICI': Data_IT_SICI,
'IT_SUD': Data_IT_SUD,
'DK_1': Data_DK_1,
'DK_2': Data_DK_2,
}
countries_all_RES = ['BE', 'FR', 'NL', 'DE_LU', 'PT', 'DK_1', 'DK_2']
countries_no_offshore= ['AT', 'ES', 'IT_CALA', 'IT_CNOR', 'IT_CSUD', 'IT_NORD', 'IT_SICI', 'IT_SUD',]
installed_capacities = {
'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134},
'DE_LU': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915},
'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053},
'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190},
'PT': { 'Solar': 1811, 'Wind Offshore': 25, 'Wind Onshore': 5333},
'ES': { 'Solar': 23867, 'Wind Onshore': 30159},
'AT': { 'Solar': 7294, 'Wind Onshore': 4021 },
'DK_1': { 'Solar': 2738, 'Wind Offshore': 1601, 'Wind Onshore': 4112},
'DK_2': { 'Solar': 992, 'Wind Offshore': 1045, 'Wind Onshore': 748},
}
forecast_columns_all_RES = [
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
forecast_columns_no_wind_offshore = [
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
st.sidebar.header('Filters')
st.sidebar.subheader("Select Country")
st.sidebar.caption("Choose the country for which you want to display data or forecasts.")
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))
# Sidebar with radio buttons for different sections
if selected_country != 'Overall':
st.sidebar.subheader("Section")
st.sidebar.caption("Select the type of information you want to explore.")
section = st.sidebar.radio('', ['Data Quality', 'Forecasts Quality', 'Insights'], index=1)
else:
section = None # No section is shown when "Overall" is selected
if selected_country == 'Overall':
data = None # You can set data to None or a specific dataset based on your logic
section = None # No section selected when "Overall" is chosen
else:
country_code = countries[selected_country]
data = data_dict.get(country_code)
if country_code in countries_all_RES:
forecast_columns = forecast_columns_all_RES
elif country_code in countries_no_offshore:
forecast_columns = forecast_columns_no_wind_offshore
if country_code == 'BE':
weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore']
data['Temperature'] = data['temperature_2m_8']
data['Wind Speed Onshore'] = data['wind_speed_100m_8']
data['Wind Speed Offshore'] = data['wind_speed_100m_4']
else:
weather_columns = ['Temperature', 'Wind Speed']
data['Temperature'] = data['temperature_2m']
data['Wind Speed'] = data['wind_speed_100m']
if section == 'Data Quality':
st.header('Data Quality')
st.write('The table below presents the data quality metrics focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.')
yesterday_midnight = pd.Timestamp(datetime.datetime.now().date() - pd.Timedelta(days=1)).replace(hour=23, minute=59, second=59)
# Filter data until the end of yesterday (midnight)
data_quality = data[data.index <= yesterday_midnight]
# Report % of missing values
missing_values = data_quality[forecast_columns].isna().mean() * 100
missing_values = missing_values.round(2)
if country_code not in installed_capacities:
st.markdown(f"⚠️ **Installed capacities not available on ENTSO-E Transparency Platform for country code '{country_code}'. Therefore, cannot calculate Extreme/Nonsensical values.**")
# If capacities are not available, assign NaN to extreme_values and skip extreme value checking
extreme_values = {col: np.nan for col in forecast_columns}
else:
capacities = installed_capacities[country_code]
extreme_values = {}
for col in forecast_columns:
if 'Solar_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100
elif 'Solar_forecast_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100
elif 'Wind_onshore_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100
elif 'Wind_onshore_forecast_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100
elif 'Wind_offshore_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100
elif 'Wind_offshore_forecast_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100
elif 'Load_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100
elif 'Load_forecast_entsoe' in col:
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100
extreme_values = pd.Series(extreme_values).round(2)
# Combine all metrics into one DataFrame
metrics_df = pd.DataFrame({
'Missing Values (%)': missing_values,
'Extreme/Nonsensical Values (%)': extreme_values,
})
st.markdown(
"""
<style>
.dataframe {font-size: 45px !important;}
</style>
""",
unsafe_allow_html=True
)
st.dataframe(metrics_df)
st.write('<b><u>Missing values (%)</u></b>: Percentage of missing values in the dataset', unsafe_allow_html=True)
st.write('<b><u>Extreme/Nonsensical values (%)</u></b>: Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True)
elif section == 'Forecasts Quality':
st.header('Forecast Quality')
# Time series for last 1 week
last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))]
st.write('The below plot shows the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform from the past week.')
# Options for selecting the data to display
if country_code in countries_all_RES:
variable_options = {
"Load": ("Load_entsoe", "Load_forecast_entsoe"),
"Solar": ("Solar_entsoe", "Solar_forecast_entsoe"),
"Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"),
"Wind Offshore": ("Wind_offshore_entsoe", "Wind_offshore_forecast_entsoe")
}
elif country_code in countries_no_offshore:
variable_options = {
"Load": ("Load_entsoe", "Load_forecast_entsoe"),
"Solar": ("Solar_entsoe", "Solar_forecast_entsoe"),
"Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"),
}
else:
print('Country code doesnt correspond.')
# Dropdown to select the variable
selected_variable = st.selectbox("Select Variable for Line PLot", list(variable_options.keys()))
# Get the corresponding columns for the selected variable
actual_col, forecast_col = variable_options[selected_variable]
# Plot only the selected variable's data
fig = go.Figure()
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual'))
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E'))
fig.update_layout(title=f'Forecasts vs Actual for {selected_variable}', xaxis_title='Date', yaxis_title='Value [MW]')
st.plotly_chart(fig)
# Scatter plots for error distribution
st.subheader('Error Distribution')
st.write('The below scatter plots show the error distribution of all fields: Solar, Wind and Load.')
selected_variable = st.selectbox("Select Variable for Error Distribution", list(variable_options.keys()))
# Get the corresponding columns for the selected variable
actual_col, forecast_col = variable_options[selected_variable]
# Filter data for the selected year and check if columns are available
data_2024 = data[data.index.year > 2023]
if forecast_col in data_2024.columns:
obs = data_2024[actual_col]
pred = data_2024[forecast_col]
# Calculate error and plot
error = pred - obs
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Forecast ENTSO-E [MW]'})
fig.update_layout(title=f'Error Distribution for {selected_variable}')
st.plotly_chart(fig)
st.subheader('Accuracy Metrics (Sorted by rMAE):')
date_range = st.date_input(
"Select Date Range for Metrics Calculation:",
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today')))
)
if len(date_range) == 2:
start_date = pd.Timestamp(date_range[0])
end_date = pd.Timestamp(date_range[1])
else:
st.error("Please select a valid date range.")
st.stop()
output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. "
st.write(output_text)
data = data.loc[start_date:end_date]
if country_code in countries_all_RES:
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])
elif country_code in countries_no_offshore:
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore'])
else:
print('Country code doesnt correspond.')
for i in range(0, len(forecast_columns), 2):
actual_col = forecast_columns[i]
forecast_col = forecast_columns[i + 1]
if forecast_col in data.columns:
obs = data[actual_col]
pred = data[forecast_col]
error = pred - obs
mae = round(np.mean(np.abs(error)),2)
if 'Load' in actual_col:
persistence = obs.shift(168) # Weekly persistence
else:
persistence = obs.shift(24) # Daily persistence
# Using the whole year's data for rMAE calculations
rmae = round(mae / np.mean(np.abs(obs - persistence)),2)
row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore'
accuracy_metrics.loc[row_label] = [mae, rmae]
accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column)
accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True)
accuracy_metrics = accuracy_metrics.round(4)
col1, col2 = st.columns([1, 2])
with col1:
st.markdown(
"""
<style>
.small-chart {
margin-top: 30px; /* Adjust this value as needed */
}
</style>
""",
unsafe_allow_html=True
)
st.dataframe(accuracy_metrics)
st.markdown(
"""
<style>
.small-chart {
margin-top: -30px; /* Adjust this value as needed */
}
</style>
""",
unsafe_allow_html=True
)
with col2:
# Prepare data for the radar chart
rmae_values = accuracy_metrics['rMAE'].tolist()
categories = accuracy_metrics.index.tolist()
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=rmae_values,
theta=categories,
fill='toself',
name='rMAE'
))
# Configuring radar chart layout to be smaller
fig.update_layout(
width=250, # Adjust width
height=250, # Adjust height
margin=dict(t=20, b=20, l=0, r=0), # Remove all margins
polar=dict(
radialaxis=dict(
visible=True,
range=[0, max(rmae_values) * 1.2] # Adjust range dynamically
)),
showlegend=False
)
# Apply CSS class to remove extra space above chart
st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, className="small-chart")
st.subheader('ACF plots of Errors')
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
# Dropdown to select the variable
selected_variable = st.selectbox("Select Variable for ACF of Errors", list(variable_options.keys()))
# Get the corresponding columns for the selected variable
actual_col, forecast_col = variable_options[selected_variable]
# Calculate the error and plot ACF if columns are available
if forecast_col in data.columns:
obs = data[actual_col]
pred = data[forecast_col]
error = pred - obs
st.write(f"**ACF of Errors for {selected_variable}**")
fig, ax = plt.subplots(figsize=(10, 5))
plot_acf(error.dropna(), ax=ax)
st.pyplot(fig)
# Optionally calculate and store ACF values for further analysis if needed
acf_values = acf(error.dropna(), nlags=240)
elif section == 'Insights':
st.header("Insights")
st.write('The scatter plots below are created to explore possible correlations between the data fields: Solar, Wind Onshore, Wind Offshore (if any), Load, and Weather Features.')
# Add a selection box for the data resolution (weekly, daily, hourly)
data_2024 = data[data.index.year == 2024]
resolution = st.selectbox('Select data resolution:', ['Daily', 'Hourly'])
# Resample data based on the selected resolution
if resolution == 'Hourly':
resampled_data = data_2024
elif resolution == 'Daily':
resampled_data = data_2024.resample('D').mean() # Resample to daily mean
# Select the necessary columns for the scatter plot
if country_code in countries_all_RES:
selected_columns = ['Load_entsoe', 'Solar_entsoe', 'Wind_offshore_entsoe', 'Wind_onshore_entsoe'] + weather_columns
elif country_code in countries_no_offshore:
selected_columns = ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe'] + weather_columns
else:
print('Country code doesnt correspond.')
selected_df = resampled_data[selected_columns]
selected_df.columns = [col.replace('_entsoe', '').replace('_', ' ') for col in selected_df.columns]
# Drop missing values
selected_df = selected_df.dropna()
# Create the scatter plots using seaborn's pairplot
sns.set_theme(style="ticks")
pairplot_fig = sns.pairplot(selected_df)
# Display the pairplot in Streamlit
st.pyplot(pairplot_fig)
elif selected_country == 'Overall':
def get_forecast_columns(country_code):
if country_code in countries_all_RES:
return forecast_columns_all_RES
elif country_code in countries_no_offshore:
return forecast_columns_no_wind_offshore
else:
print('Country code doesnt correspond.')
def calculate_net_load_error(df, country_code):
forecast_columns = get_forecast_columns(country_code)
filter_df = df[forecast_columns].dropna()
# Initialize net_load and net_load_forecast with Load and other available data
net_load = filter_df['Load_entsoe'] - filter_df['Wind_onshore_entsoe'] - filter_df['Solar_entsoe']
net_load_forecast = filter_df['Load_forecast_entsoe'] - filter_df['Wind_onshore_forecast_entsoe'] - filter_df['Solar_forecast_entsoe']
# Subtract Wind_offshore_entsoe if the column exists
if 'Wind_offshore_entsoe' in filter_df.columns:
net_load -= filter_df['Wind_offshore_entsoe']
# Subtract Wind_offshore_forecast_entsoe if the column exists
if 'Wind_offshore_forecast_entsoe' in filter_df.columns:
net_load_forecast -= filter_df['Wind_offshore_forecast_entsoe']
# Calculate the error based on the latest values
error = (net_load_forecast - net_load).iloc[-1]
date = filter_df.index[-1].strftime("%Y-%m-%d %H:%M") # Get the latest date in string format
return error, date
def plot_net_load_error_map(data_dict):
# Calculate net load errors and dates for each country
net_load_errors = {country_code: calculate_net_load_error(data, country_code) for country_code, data in data_dict.items()}
# Use country codes directly
selected_country_codes = list(data_dict.keys())
df_net_load_error = pd.DataFrame({
'zoneName': selected_country_codes,
'net_load_error': [v[0] for v in net_load_errors.values()],
'date': [v[1] for v in net_load_errors.values()]
})
# Load the GeoJSON data using the entsoe library
date = pd.Timestamp.now()
geo_data = load_zones(selected_country_codes, date)
# Reset index to include 'zoneName' as a column
geo_data = geo_data.reset_index()
# Map country codes to country names
countries_code_to_name = {v: k for k, v in countries.items()}
geo_data['name'] = geo_data['zoneName'].map(countries_code_to_name)
# Merge net_load_error and date into geo_data
geo_data = geo_data.merge(df_net_load_error, on='zoneName', how='left')
# Initialize the Folium map
m = folium.Map(location=[46.6034, 1.8883], zoom_start=4, tiles="cartodb positron")
# Calculate the maximum absolute net load error for normalization
max_value = df_net_load_error['net_load_error'].abs().max()
# Create a colormap with lighter shades
colormap = branca.colormap.LinearColormap(
colors=['#0D92F4', 'white', '#C62E2E'], # Light blue to white to light coral
vmin=-max_value,
vmax=max_value,
caption='Net Load Error [MW]'
)
# Define the style function
def style_function(feature):
net_load_error = feature['properties']['net_load_error']
if net_load_error is None:
return {'fillOpacity': 0.5, 'color': 'grey', 'weight': 0.5}
else:
fill_color = colormap(net_load_error)
return {
'fillColor': fill_color,
'fillOpacity': 0.8, # Set a constant opacity
'color': 'black',
'weight': 0.5
}
# Add the GeoJson layer with the custom style_function
folium.GeoJson(
geo_data,
style_function=style_function,
tooltip=folium.GeoJsonTooltip(
fields=["name", "net_load_error", "date"],
aliases=["Country:", "Net Load Error [MW]:", "Date:"],
localize=True
)
).add_to(m)
# Add the colormap to the map
colormap.add_to(m)
# Display the map
st_folium(m, width=700, height=600)
def calculate_mae(actual, forecast):
return np.mean(np.abs(actual - forecast))
def calculate_persistence_mae(data, shift_hours):
return np.mean(np.abs(data - data.shift(shift_hours)))
def calculate_rmae_for_country(df):
rmae = {}
rmae['Load'] = calculate_mae(df['Load_entsoe'], df['Load_forecast_entsoe']) / calculate_persistence_mae(df['Load_entsoe'], 168)
rmae['Wind_onshore'] = calculate_mae(df['Wind_onshore_entsoe'], df['Wind_onshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_onshore_entsoe'], 24)
# Only calculate Wind_offshore rMAE if the columns exist
if 'Wind_offshore_entsoe' in df.columns and 'Wind_offshore_forecast_entsoe' in df.columns:
rmae['Wind_offshore'] = calculate_mae(df['Wind_offshore_entsoe'], df['Wind_offshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_offshore_entsoe'], 24)
else:
rmae['Wind_offshore'] = None # Mark as None if not applicable
rmae['Solar'] = calculate_mae(df['Solar_entsoe'], df['Solar_forecast_entsoe']) / calculate_persistence_mae(df['Solar_entsoe'], 24)
return rmae
def create_rmae_dataframe(data_dict):
rmae_values = {'Country': [], 'Load': [], 'Wind_onshore': [], 'Wind_offshore': [], 'Solar': []}
for country_name, df in data_dict.items():
forecast_columns=get_forecast_columns(country_name)
df_filtered = df[forecast_columns].dropna()
rmae = calculate_rmae_for_country(df_filtered)
rmae_values['Country'].append(country_name)
rmae_values['Load'].append(rmae['Load'])
rmae_values['Wind_onshore'].append(rmae['Wind_onshore'])
rmae_values['Solar'].append(rmae['Solar'])
# Append Wind_offshore rMAE only if it's not None (i.e., the country has offshore wind data)
if rmae['Wind_offshore'] is not None:
rmae_values['Wind_offshore'].append(rmae['Wind_offshore'])
else:
rmae_values['Wind_offshore'].append(np.nan) # Insert NaN for countries without offshore wind
return pd.DataFrame(rmae_values)
def plot_rmae_radar_chart(rmae_df):
fig = go.Figure()
# Dynamically adjust angles to exclude Wind_offshore if all values are NaN
angles = ['Load', 'Wind_onshore', 'Solar']
if not rmae_df['Wind_offshore'].isna().all(): # Only include Wind_offshore if it's not NaN for all countries
angles.append('Wind_offshore')
for _, row in rmae_df.iterrows():
fig.add_trace(go.Scatterpolar(
r=[row[angle] for angle in angles],
theta=angles,
fill='toself',
name=row['Country']
))
fig.update_layout(
polar=dict(
radialaxis=dict(visible=True, range=[0, 1.2])
),
showlegend=True,
title="rMAE Radar Chart by Country"
)
st.plotly_chart(fig)
st.subheader("Net Load Error Map")
st.write("""
The net load error map highlights the error in the forecasted versus actual net load for each country.
Hover over each country to see details on the latest net load error and the timestamp (with the time zone of the corresponding country) of the last recorded data.
""")
plot_net_load_error_map(data_dict)
st.subheader("rMAE of Forecasts published on ENTSO-E TP")
st.write("""The rMAE of Forecasts chart compares the forecast accuracy of the predictions published by ENTSO-E Transparency Platform for Portugal, Spain, Belgium, France, Germany-Luxembourg, Austria, the Netherlands, Italy and Denmark. It shows the rMAE for onshore wind, offshore wind (if any), solar, and load demand, highlighting how well forecasts perform relative to a basic persistence model across these countries and energy sectors.""")
rmae_df = create_rmae_dataframe(data_dict)
plot_rmae_radar_chart(rmae_df)