Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -47,6 +47,34 @@ def convert_European_time(data, time_zone):
|
|
47 |
data.index = data.index.tz_localize(None)
|
48 |
return data
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
github_token = st.secrets["GitHub_Token_KUL_Margarida"]
|
51 |
|
52 |
if github_token:
|
@@ -92,8 +120,26 @@ def conformal_predictions(data, target, my_forecast):
|
|
92 |
#data.reset_index(inplace=True)
|
93 |
return data
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
st.title("Transparency++")
|
97 |
|
98 |
countries = {
|
99 |
'Belgium': 'BE',
|
@@ -105,9 +151,15 @@ countries = {
|
|
105 |
|
106 |
st.sidebar.header('Filters')
|
107 |
|
|
|
|
|
|
|
108 |
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))
|
109 |
|
110 |
|
|
|
|
|
|
|
111 |
st.write()
|
112 |
date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:",
|
113 |
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))
|
@@ -120,9 +172,12 @@ else:
|
|
120 |
st.error("Please select a valid date range.")
|
121 |
st.stop()
|
122 |
|
123 |
-
|
124 |
-
|
|
|
125 |
|
|
|
|
|
126 |
|
127 |
country_code = countries[selected_country]
|
128 |
if country_code == 'BE':
|
@@ -161,7 +216,7 @@ def add_feature(df2, df_main):
|
|
161 |
#df_combined.reset_index(inplace=True)
|
162 |
return df_combined
|
163 |
#data.index = data.index.tz_localize('UTC')
|
164 |
-
|
165 |
|
166 |
forecast_columns = [
|
167 |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
@@ -175,8 +230,7 @@ if section == 'Data':
|
|
175 |
|
176 |
st.header('Data Quality')
|
177 |
|
178 |
-
|
179 |
-
st.write(output_text)
|
180 |
|
181 |
# Report % of missing values
|
182 |
missing_values = data[forecast_columns].isna().mean() * 100
|
@@ -403,21 +457,225 @@ elif section == 'Forecasts':
|
|
403 |
)
|
404 |
)
|
405 |
return fig
|
|
|
406 |
|
407 |
-
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
-
|
411 |
-
st.plotly_chart(solar_fig)
|
412 |
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
-
|
417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
-
|
420 |
-
|
421 |
|
422 |
# Scatter plots for error distribution
|
423 |
st.subheader('Error Distribution')
|
@@ -426,18 +684,22 @@ elif section == 'Forecasts':
|
|
426 |
actual_col = forecast_columns[i]
|
427 |
forecast_col = forecast_columns[i + 1]
|
428 |
if forecast_col in data.columns:
|
429 |
-
obs =
|
430 |
-
pred =
|
431 |
error = pred - obs
|
432 |
|
433 |
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
|
434 |
fig.update_layout(title=f'Error Distribution for {forecast_col}')
|
435 |
st.plotly_chart(fig)
|
436 |
|
437 |
-
|
438 |
|
439 |
st.subheader('Accuracy Metrics (Sorted by rMAE):')
|
440 |
|
|
|
|
|
|
|
|
|
441 |
if country_code == "BE":
|
442 |
|
443 |
# Combine the two DataFrames on their index
|
@@ -531,26 +793,32 @@ elif section == 'Forecasts':
|
|
531 |
|
532 |
# Convert the dictionaries to DataFrames and sort by rMAE
|
533 |
df_wind_onshore = pd.DataFrame.from_dict(results_wind_onshore, orient='index').sort_values(by='rMAE')
|
|
|
534 |
df_wind_offshore = pd.DataFrame.from_dict(results_wind_offshore, orient='index').sort_values(by='rMAE')
|
535 |
df_load = pd.DataFrame.from_dict(results_load, orient='index').sort_values(by='rMAE')
|
536 |
df_solar = pd.DataFrame.from_dict(results_solar, orient='index').sort_values(by='rMAE')
|
537 |
|
538 |
|
539 |
st.write("##### Wind Onshore:")
|
|
|
540 |
st.dataframe(df_wind_onshore)
|
541 |
|
542 |
st.write("##### Wind Offshore:")
|
|
|
543 |
st.dataframe(df_wind_offshore)
|
544 |
|
545 |
st.write("##### Load:")
|
|
|
546 |
st.dataframe(df_load)
|
547 |
|
548 |
st.write("##### Solar:")
|
|
|
549 |
st.dataframe(df_solar)
|
550 |
|
551 |
|
552 |
|
553 |
else:
|
|
|
554 |
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])
|
555 |
|
556 |
for i in range(0, len(forecast_columns), 2):
|
@@ -607,7 +875,7 @@ elif section == 'Forecasts':
|
|
607 |
|
608 |
|
609 |
st.subheader('ACF plots of Errors')
|
610 |
-
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three fields: Solar, Wind and Load.')
|
611 |
|
612 |
for i in range(0, len(forecast_columns), 2):
|
613 |
actual_col = forecast_columns[i]
|
@@ -634,7 +902,7 @@ elif section == 'Insights':
|
|
634 |
|
635 |
# Scatter plots for correlation between wind, solar, and load
|
636 |
st.subheader('Correlation between Wind, Solar, and Load')
|
637 |
-
st.write('The below scatter plots for correlation between all three fields: Solar, Wind and Load.')
|
638 |
|
639 |
combinations = [('Solar_entsoe', 'Load_entsoe'), ('Wind_onshore_entsoe', 'Load_entsoe'), ('Wind_offshore_entsoe', 'Load_entsoe'), ('Solar_entsoe', 'Wind_onshore_entsoe'), ('Solar_entsoe', 'Wind_offshore_entsoe')]
|
640 |
|
@@ -659,12 +927,13 @@ elif section == 'Insights':
|
|
659 |
|
660 |
|
661 |
st.subheader('Weather vs. Generation/Demand')
|
662 |
-
st.write('The below scatter plots show the relation between weather parameters (i.e., Temperature, Wind Speed) and generation/demand.')
|
663 |
|
664 |
for weather_col in weather_columns:
|
665 |
for actual_col in ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe', 'Wind_offshore_entsoe']:
|
666 |
if weather_col in data.columns and actual_col in data.columns:
|
667 |
clean_label = actual_col.replace('_entsoe', '')
|
|
|
668 |
if weather_col == 'Temperature':
|
669 |
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (°C)', 'y': f'{clean_label} Generation [MW]'}, color_discrete_sequence=['orange'])
|
670 |
else:
|
|
|
47 |
data.index = data.index.tz_localize(None)
|
48 |
return data
|
49 |
|
50 |
+
def simplify_model_names(df):
|
51 |
+
# Define the mapping of complex names to simpler ones
|
52 |
+
replacements = {
|
53 |
+
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
|
54 |
+
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
|
55 |
+
r'\.Naive\.\dD': '.Naive',
|
56 |
+
}
|
57 |
+
|
58 |
+
# Apply the replacements
|
59 |
+
for original, simplified in replacements.items():
|
60 |
+
df.columns = df.columns.str.replace(original, simplified, regex=True)
|
61 |
+
|
62 |
+
return df
|
63 |
+
|
64 |
+
def simplify_model_names_in_index(df):
|
65 |
+
# Define the mapping of complex names to simpler ones
|
66 |
+
replacements = {
|
67 |
+
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
|
68 |
+
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
|
69 |
+
r'\.Naive\.\dD': '.Naive',
|
70 |
+
}
|
71 |
+
|
72 |
+
# Apply the replacements to the DataFrame index
|
73 |
+
for original, simplified in replacements.items():
|
74 |
+
df.index = df.index.str.replace(original, simplified, regex=True)
|
75 |
+
|
76 |
+
return df
|
77 |
+
|
78 |
github_token = st.secrets["GitHub_Token_KUL_Margarida"]
|
79 |
|
80 |
if github_token:
|
|
|
120 |
#data.reset_index(inplace=True)
|
121 |
return data
|
122 |
|
123 |
+
# Main layout of the app
|
124 |
+
col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs
|
125 |
+
with col1:
|
126 |
+
st.title("Transparency++")
|
127 |
+
|
128 |
+
with col2:
|
129 |
+
upper_space = col2.empty()
|
130 |
+
upper_space = col2.empty()
|
131 |
+
col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images
|
132 |
+
with col2_1:
|
133 |
+
st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed
|
134 |
+
with col2_2:
|
135 |
+
st.image("energyville_logo.png", width=100)
|
136 |
+
|
137 |
+
upper_space.markdown("""
|
138 |
+
|
139 |
+
|
140 |
+
""", unsafe_allow_html=True)
|
141 |
+
|
142 |
|
|
|
143 |
|
144 |
countries = {
|
145 |
'Belgium': 'BE',
|
|
|
151 |
|
152 |
st.sidebar.header('Filters')
|
153 |
|
154 |
+
st.sidebar.subheader("Select Country")
|
155 |
+
st.sidebar.caption("Choose the country for which you want to display data or forecasts.")
|
156 |
+
|
157 |
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))
|
158 |
|
159 |
|
160 |
+
st.sidebar.subheader("Select Date Range ")
|
161 |
+
st.sidebar.caption("Define the time period over which the accuracy metrics will be calculated.")
|
162 |
+
|
163 |
st.write()
|
164 |
date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:",
|
165 |
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))
|
|
|
172 |
st.error("Please select a valid date range.")
|
173 |
st.stop()
|
174 |
|
175 |
+
st.sidebar.subheader("Section")
|
176 |
+
st.sidebar.caption("Select the type of information you want to explore.")
|
177 |
+
|
178 |
|
179 |
+
# Sidebar with radio buttons for different sections
|
180 |
+
section = st.sidebar.radio('', ['Data', 'Forecasts', 'Insights'],index=1)
|
181 |
|
182 |
country_code = countries[selected_country]
|
183 |
if country_code == 'BE':
|
|
|
216 |
#df_combined.reset_index(inplace=True)
|
217 |
return df_combined
|
218 |
#data.index = data.index.tz_localize('UTC')
|
219 |
+
|
220 |
|
221 |
forecast_columns = [
|
222 |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
|
|
230 |
|
231 |
st.header('Data Quality')
|
232 |
|
233 |
+
st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.')
|
|
|
234 |
|
235 |
# Report % of missing values
|
236 |
missing_values = data[forecast_columns].isna().mean() * 100
|
|
|
457 |
)
|
458 |
)
|
459 |
return fig
|
460 |
+
|
461 |
|
462 |
+
def calculate_mae(y_true, y_pred):
|
463 |
+
return np.mean(np.abs(y_true - y_pred))
|
464 |
+
def plot_mae_comparison(df_dict, category_prefix, title, real_values_df):
|
465 |
+
hours = list(range(24))
|
466 |
+
if category_prefix=='Load':
|
467 |
+
model_colors = {
|
468 |
+
'LightGBMModel.7D.TimeCov.Temp.Forecast_elia': '#1F77B4', # Blue
|
469 |
+
'LightGBMModel.7D.TimeCov.Temp': '#2CA02C', # Green
|
470 |
+
'Naive': '#FF7F0E' # Orange
|
471 |
+
}
|
472 |
+
else:
|
473 |
+
model_colors = {
|
474 |
+
'LightGBMModel.1D.TimeCov.Temp.Forecast_elia': '#1F77B4', # Blue
|
475 |
+
'LightGBMModel.1D.TimeCov.Temp': '#2CA02C', # Green
|
476 |
+
'Naive': '#FF7F0E' # Orange
|
477 |
+
}
|
478 |
+
fig = go.Figure()
|
479 |
+
for model_key, base_color in model_colors.items():
|
480 |
+
hours_with_data = []
|
481 |
+
mae_ratios = []
|
482 |
+
for hour in hours:
|
483 |
+
file_name = f'Predictions_{hour}h.csv'
|
484 |
+
df = df_dict.get(file_name, None)
|
485 |
+
if df is None:
|
486 |
+
continue
|
487 |
+
if isinstance(df.index, pd.DatetimeIndex):
|
488 |
+
first_day = df.index.min().normalize()
|
489 |
+
last_day = df.index.max().normalize()
|
490 |
+
df = df[df.index.normalize() != first_day]
|
491 |
+
df = df[df.index.normalize() != last_day]
|
492 |
+
# Adjusted filtering logic based on actual column names
|
493 |
+
filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col]
|
494 |
+
if not filtered_columns:
|
495 |
+
continue
|
496 |
+
# Assuming only one column matches, otherwise refine the selection logic
|
497 |
+
model_predictions = df[filtered_columns[0]]
|
498 |
+
actual_values = real_values_df[f'{category_prefix}_entsoe']
|
499 |
+
actual_values = actual_values.dropna()
|
500 |
+
# Align both series by their common indices
|
501 |
+
common_indices = model_predictions.index.intersection(actual_values.index)
|
502 |
+
aligned_model_predictions = model_predictions.loc[common_indices]
|
503 |
+
aligned_actual_values = actual_values.loc[common_indices]
|
504 |
+
# Calculate MAE for the model
|
505 |
+
model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions)
|
506 |
+
# Calculate MAE for the entsoe forecast
|
507 |
+
entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices]
|
508 |
+
#print(entsoe_forecast.index)
|
509 |
+
entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast)
|
510 |
+
# Calculate MAE ratio
|
511 |
+
mae_ratio = model_mae / entsoe_mae
|
512 |
+
mae_ratios.append(mae_ratio)
|
513 |
+
hours_with_data.append(hour)
|
514 |
+
# Plot the MAE ratio for this model as points
|
515 |
+
if mae_ratios: # Only plot if there's data
|
516 |
+
fig.add_trace(go.Scatter(
|
517 |
+
x=hours_with_data, # The hours where we have data
|
518 |
+
y=mae_ratios,
|
519 |
+
mode='markers+lines', # Plot as points connected by lines
|
520 |
+
name=model_key,
|
521 |
+
line=dict(color=base_color),
|
522 |
+
marker=dict(color=base_color, size=8) # Customize marker size
|
523 |
+
))
|
524 |
+
# Update layout
|
525 |
+
fig.update_layout(
|
526 |
+
title=f'{category_prefix}: rMAE<span style="font-size:11px;">ENTSO-E</span> by hour of Forecasting.',
|
527 |
+
xaxis_title='Hour of Forecast',
|
528 |
+
yaxis_title='MAE Ratio (Model / entsoe)',
|
529 |
+
legend=dict(
|
530 |
+
orientation="h",
|
531 |
+
yanchor="bottom",
|
532 |
+
y=1.02,
|
533 |
+
xanchor="center",
|
534 |
+
x=0.5
|
535 |
+
)
|
536 |
+
)
|
537 |
+
return fig
|
538 |
+
|
539 |
+
|
540 |
+
|
541 |
+
def plot_mae_comparison_clock(df_dict, category_prefix, title, real_values_df):
|
542 |
+
hours = list(range(24))
|
543 |
+
if category_prefix=='Load':
|
544 |
+
model_colors = {
|
545 |
+
'LightGBM_with_Forecast_elia': '#1F77B4', # Blue
|
546 |
+
'LightGBM': '#2CA02C', # Green
|
547 |
+
'Naive': '#FF7F0E' # Orange
|
548 |
+
}
|
549 |
+
else:
|
550 |
+
model_colors = {
|
551 |
+
'LightGBM_with_Forecast_elia': '#1F77B4', # Blue
|
552 |
+
'LightGBM': '#2CA02C', # Green
|
553 |
+
'Naive': '#FF7F0E' # Orange
|
554 |
+
}
|
555 |
|
556 |
+
fig = go.Figure()
|
|
|
557 |
|
558 |
+
for model_key, base_color in model_colors.items():
|
559 |
+
hours_with_data = []
|
560 |
+
mae_ratios = []
|
561 |
+
|
562 |
+
#print(f"Processing {model_key}...") # Debugging print
|
563 |
+
|
564 |
+
for hour in hours:
|
565 |
+
file_name = f'Predictions_{hour}h.csv'
|
566 |
+
df = df_dict.get(file_name, None)
|
567 |
+
if df is None:
|
568 |
+
#print(f"No data for hour {hour}. Skipping...")
|
569 |
+
continue
|
570 |
+
|
571 |
+
if isinstance(df.index, pd.DatetimeIndex):
|
572 |
+
first_day = df.index.min().normalize()
|
573 |
+
last_day = df.index.max().normalize()
|
574 |
+
df = df[df.index.normalize() != first_day]
|
575 |
+
df = df[df.index.normalize() != last_day]
|
576 |
+
|
577 |
+
filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col]
|
578 |
+
if not filtered_columns:
|
579 |
+
print(f"No matching columns for {model_key} at hour {hour}. Skipping...")
|
580 |
+
continue
|
581 |
+
|
582 |
+
model_predictions = df[filtered_columns[0]]
|
583 |
+
actual_values = real_values_df[f'{category_prefix}_entsoe']
|
584 |
+
actual_values = actual_values.dropna()
|
585 |
+
|
586 |
+
common_indices = model_predictions.index.intersection(actual_values.index)
|
587 |
+
aligned_model_predictions = model_predictions.loc[common_indices]
|
588 |
+
aligned_actual_values = actual_values.loc[common_indices]
|
589 |
+
|
590 |
+
model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions)
|
591 |
+
entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices]
|
592 |
+
entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast)
|
593 |
+
|
594 |
+
mae_ratio = model_mae / entsoe_mae
|
595 |
+
mae_ratios.append(mae_ratio)
|
596 |
+
hours_with_data.append(hour)
|
597 |
+
|
598 |
+
if mae_ratios:
|
599 |
+
print(f"Adding {model_key} to the plot with {len(mae_ratios)} points.") # Debugging print
|
600 |
+
fig.add_trace(go.Scatterpolar(
|
601 |
+
r=mae_ratios + [mae_ratios[0]], # Ensure closure of the polar plot
|
602 |
+
theta=[h * 15 for h in hours_with_data] + [0], # Ensure closure at 0 degrees
|
603 |
+
mode='lines+markers',
|
604 |
+
name=model_key,
|
605 |
+
line=dict(color=base_color),
|
606 |
+
marker=dict(color=base_color, size=8)
|
607 |
+
))
|
608 |
+
else:
|
609 |
+
print(f"No data to plot for {model_key}.") # Debugging print
|
610 |
+
|
611 |
+
fig.update_layout(
|
612 |
+
polar=dict(
|
613 |
+
radialaxis=dict(visible=True, range=[0, max(max(mae_ratios), 1.0) * 1.1] if mae_ratios else [0, 1.0]),
|
614 |
+
angularaxis=dict(tickmode='array', tickvals=[h * 15 for h in hours], ticktext=hours)
|
615 |
+
),
|
616 |
+
title=f'{category_prefix}: rMAE<span style="font-size:11px;">ENTSO-E</span> by Hour of Forecasting',
|
617 |
+
showlegend=True
|
618 |
+
)
|
619 |
+
|
620 |
+
return fig
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
if country_code == "BE":
|
626 |
+
#-------------------------------------------------
|
627 |
+
#st.header('EDS Forecasts by Hour')
|
628 |
+
|
629 |
+
#solar_fig = plot_category(forecast_dict, 'Solar', 'Solar Predictions')
|
630 |
+
#st.plotly_chart(solar_fig)
|
631 |
+
|
632 |
+
#wind_offshore_fig = plot_category(forecast_dict, 'Wind_offshore', 'Wind Offshore Predictions')
|
633 |
+
#st.plotly_chart(wind_offshore_fig)
|
634 |
+
|
635 |
+
#wind_onshore_fig = plot_category(forecast_dict, 'Wind_onshore', 'Wind Onshore Predictions')
|
636 |
+
#st.plotly_chart(wind_onshore_fig)
|
637 |
+
|
638 |
+
#load_fig = plot_category(forecast_dict, 'Load', 'Load Predictions')
|
639 |
+
#st.plotly_chart(load_fig)
|
640 |
+
|
641 |
+
#-------------------------------------------------
|
642 |
+
#st.header('MAE Ratio Comparison by Forecast Hour')
|
643 |
+
#st.write("This graph shows the relative Mean Absolute Error (rMAE) of different forecasting models "
|
644 |
+
#"compared to the ENTSO-E forecast, by the hour at which the forecast was made. "
|
645 |
+
#"The rMAE is calculated as the ratio of the model's MAE to the ENTSO-E forecast's MAE.")
|
646 |
+
#mae_comparison_fig = plot_mae_comparison(forecast_dict, 'Solar', 'rMAE Ratio Comparison for Solar', real_values_df=Data_BE)
|
647 |
+
#st.plotly_chart(mae_comparison_fig)
|
648 |
+
# Similarly for Wind_onshore, Wind_offshore, and Load
|
649 |
+
#mae_comparison_fig_wind_onshore = plot_mae_comparison(forecast_dict, 'Wind_onshore', 'MAE Ratio Comparison for Wind Onshore', real_values_df=Data_BE)
|
650 |
+
#st.plotly_chart(mae_comparison_fig_wind_onshore)
|
651 |
+
#mae_comparison_fig_wind_offshore = plot_mae_comparison(forecast_dict, 'Wind_offshore', 'MAE Ratio Comparison for Wind Offshore', real_values_df=Data_BE)
|
652 |
+
#st.plotly_chart(mae_comparison_fig_wind_offshore)
|
653 |
+
#mae_comparison_fig_load = plot_mae_comparison(forecast_dict, 'Load', 'MAE Ratio Comparison for Load', real_values_df=Data_BE)
|
654 |
+
#st.plotly_chart(mae_comparison_fig_load)
|
655 |
+
#-------------------------------------------------
|
656 |
+
|
657 |
+
st.header('MAE Ratio Comparison by Forecast Hour')
|
658 |
+
st.write("These clock-plots shows the relative Mean Absolute Error (rMAE) of different forecasting models compared to the ENTSO-E forecast, by the hour at which the forecast was made. "
|
659 |
+
"The rMAE is calculated as the ratio of the model's MAE to the ENTSO-E forecast's MAE.")
|
660 |
+
|
661 |
+
forecast_dict2 = forecast_dict.copy()
|
662 |
+
forecast_dict2 = {k: simplify_model_names(v) for k, v in forecast_dict.items()}
|
663 |
|
664 |
+
|
665 |
+
mae_comparison_fig = plot_mae_comparison_clock(forecast_dict2, 'Solar', 'rMAE Ratio Comparison for Solar', real_values_df=Data_BE)
|
666 |
+
st.plotly_chart(mae_comparison_fig)
|
667 |
+
|
668 |
+
mae_comparison_fig_wind_onshore = plot_mae_comparison_clock(forecast_dict2, 'Wind_onshore', 'MAE Ratio Comparison for Wind Onshore', real_values_df=Data_BE)
|
669 |
+
st.plotly_chart(mae_comparison_fig_wind_onshore)
|
670 |
+
|
671 |
+
mae_comparison_fig_wind_offshore = plot_mae_comparison_clock(forecast_dict2, 'Wind_offshore', 'MAE Ratio Comparison for Wind Offshore', real_values_df=Data_BE)
|
672 |
+
st.plotly_chart(mae_comparison_fig_wind_offshore)
|
673 |
+
|
674 |
+
mae_comparison_fig_load = plot_mae_comparison_clock(forecast_dict2, 'Load', 'MAE Ratio Comparison for Load', real_values_df=Data_BE)
|
675 |
+
st.plotly_chart(mae_comparison_fig_load)
|
676 |
|
677 |
+
|
678 |
+
|
679 |
|
680 |
# Scatter plots for error distribution
|
681 |
st.subheader('Error Distribution')
|
|
|
684 |
actual_col = forecast_columns[i]
|
685 |
forecast_col = forecast_columns[i + 1]
|
686 |
if forecast_col in data.columns:
|
687 |
+
obs = data[actual_col]
|
688 |
+
pred = data[forecast_col]
|
689 |
error = pred - obs
|
690 |
|
691 |
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
|
692 |
fig.update_layout(title=f'Error Distribution for {forecast_col}')
|
693 |
st.plotly_chart(fig)
|
694 |
|
695 |
+
|
696 |
|
697 |
st.subheader('Accuracy Metrics (Sorted by rMAE):')
|
698 |
|
699 |
+
output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar."
|
700 |
+
st.write(output_text)
|
701 |
+
|
702 |
+
|
703 |
if country_code == "BE":
|
704 |
|
705 |
# Combine the two DataFrames on their index
|
|
|
793 |
|
794 |
# Convert the dictionaries to DataFrames and sort by rMAE
|
795 |
df_wind_onshore = pd.DataFrame.from_dict(results_wind_onshore, orient='index').sort_values(by='rMAE')
|
796 |
+
print(df_wind_onshore)
|
797 |
df_wind_offshore = pd.DataFrame.from_dict(results_wind_offshore, orient='index').sort_values(by='rMAE')
|
798 |
df_load = pd.DataFrame.from_dict(results_load, orient='index').sort_values(by='rMAE')
|
799 |
df_solar = pd.DataFrame.from_dict(results_solar, orient='index').sort_values(by='rMAE')
|
800 |
|
801 |
|
802 |
st.write("##### Wind Onshore:")
|
803 |
+
df_wind_onshore = simplify_model_names_in_index(df_wind_onshore)
|
804 |
st.dataframe(df_wind_onshore)
|
805 |
|
806 |
st.write("##### Wind Offshore:")
|
807 |
+
df_wind_offshore2 = simplify_model_names_in_index(df_wind_offshore)
|
808 |
st.dataframe(df_wind_offshore)
|
809 |
|
810 |
st.write("##### Load:")
|
811 |
+
df_load = simplify_model_names_in_index(df_load)
|
812 |
st.dataframe(df_load)
|
813 |
|
814 |
st.write("##### Solar:")
|
815 |
+
df_solar = simplify_model_names_in_index(df_solar)
|
816 |
st.dataframe(df_solar)
|
817 |
|
818 |
|
819 |
|
820 |
else:
|
821 |
+
data = data.loc[start_date:end_date]
|
822 |
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])
|
823 |
|
824 |
for i in range(0, len(forecast_columns), 2):
|
|
|
875 |
|
876 |
|
877 |
st.subheader('ACF plots of Errors')
|
878 |
+
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
|
879 |
|
880 |
for i in range(0, len(forecast_columns), 2):
|
881 |
actual_col = forecast_columns[i]
|
|
|
902 |
|
903 |
# Scatter plots for correlation between wind, solar, and load
|
904 |
st.subheader('Correlation between Wind, Solar, and Load')
|
905 |
+
st.write('The below scatter plots are made for checking whether there exists a correlation between all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
|
906 |
|
907 |
combinations = [('Solar_entsoe', 'Load_entsoe'), ('Wind_onshore_entsoe', 'Load_entsoe'), ('Wind_offshore_entsoe', 'Load_entsoe'), ('Solar_entsoe', 'Wind_onshore_entsoe'), ('Solar_entsoe', 'Wind_offshore_entsoe')]
|
908 |
|
|
|
927 |
|
928 |
|
929 |
st.subheader('Weather vs. Generation/Demand')
|
930 |
+
st.write('The below scatter plots show the relation between weather parameters (i.e., Temperature, Wind Speed) and the generation/demand data from ENTSO-E.')
|
931 |
|
932 |
for weather_col in weather_columns:
|
933 |
for actual_col in ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe', 'Wind_offshore_entsoe']:
|
934 |
if weather_col in data.columns and actual_col in data.columns:
|
935 |
clean_label = actual_col.replace('_entsoe', '')
|
936 |
+
|
937 |
if weather_col == 'Temperature':
|
938 |
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (°C)', 'y': f'{clean_label} Generation [MW]'}, color_discrete_sequence=['orange'])
|
939 |
else:
|