Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,675 +1,675 @@
|
|
1 |
-
import requests
|
2 |
-
import pandas as pd
|
3 |
-
from io import StringIO
|
4 |
-
import streamlit as st
|
5 |
-
import os
|
6 |
-
import plotly.express as px
|
7 |
-
import plotly.graph_objects as go
|
8 |
-
import plotly.colors as pc
|
9 |
-
import numpy as np
|
10 |
-
from sklearn.metrics import mean_squared_error
|
11 |
-
from statsmodels.tsa.stattools import acf
|
12 |
-
from statsmodels.graphics.tsaplots import plot_acf
|
13 |
-
import matplotlib.pyplot as plt
|
14 |
-
|
15 |
-
|
16 |
-
##GET ALL FILES FROM GITHUB
|
17 |
-
def load_GitHub(github_token, file_name):
|
18 |
-
url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}'
|
19 |
-
headers = {'Authorization': f'token {github_token}'}
|
20 |
-
|
21 |
-
response = requests.get(url, headers=headers)
|
22 |
-
|
23 |
-
if response.status_code == 200:
|
24 |
-
csv_content = StringIO(response.text)
|
25 |
-
df = pd.read_csv(csv_content)
|
26 |
-
if 'Date' in df.columns:
|
27 |
-
df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime
|
28 |
-
df.set_index('Date', inplace=True) # Set 'Date' column as the index
|
29 |
-
#df.to_csv(file_name)
|
30 |
-
return df
|
31 |
-
else:
|
32 |
-
print(f"Failed to download {file_name}. Status code: {response.status_code}")
|
33 |
-
return None
|
34 |
-
|
35 |
-
def load_forecast(github_token):
|
36 |
-
predictions_dict = {}
|
37 |
-
for hour in range(24):
|
38 |
-
file_name = f'Predictions_{hour}h.csv'
|
39 |
-
df = load_GitHub(github_token, file_name)
|
40 |
-
if df is not None:
|
41 |
-
predictions_dict[file_name] = df
|
42 |
-
return predictions_dict
|
43 |
-
|
44 |
-
def convert_European_time(data, time_zone):
|
45 |
-
data.index = pd.to_datetime(data.index, utc=True)
|
46 |
-
data.index = data.index.tz_convert(time_zone)
|
47 |
-
data.index = data.index.tz_localize(None)
|
48 |
-
return data
|
49 |
-
|
50 |
-
github_token =
|
51 |
-
|
52 |
-
if github_token:
|
53 |
-
forecast_dict = load_forecast(github_token)
|
54 |
-
|
55 |
-
historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv')
|
56 |
-
|
57 |
-
Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv')
|
58 |
-
Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv')
|
59 |
-
Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv')
|
60 |
-
Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv')
|
61 |
-
|
62 |
-
Data_BE=convert_European_time(Data_BE, 'Europe/Brussels')
|
63 |
-
Data_FR=convert_European_time(Data_FR, 'Europe/Paris')
|
64 |
-
Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam')
|
65 |
-
Data_DE=convert_European_time(Data_DE, 'Europe/Berlin')
|
66 |
-
|
67 |
-
|
68 |
-
else:
|
69 |
-
print("Please enter your GitHub Personal Access Token to proceed.")
|
70 |
-
|
71 |
-
def conformal_predictions(data, target, my_forecast):
|
72 |
-
data['Residuals'] = data[my_forecast] - data[actual_col]
|
73 |
-
data['Hour'] = data.index.hour
|
74 |
-
|
75 |
-
min_date = data.index.min()
|
76 |
-
for date in data.index.normalize().unique():
|
77 |
-
if date >= min_date + pd.DateOffset(days=30):
|
78 |
-
start_date = date - pd.DateOffset(days=30)
|
79 |
-
end_date = date
|
80 |
-
calculation_window = data[start_date:end_date-pd.DateOffset(hours=1)]
|
81 |
-
quantiles = calculation_window.groupby('Hour')['Residuals'].quantile(0.8)
|
82 |
-
# Use .loc to safely access and modify data
|
83 |
-
if date in data.index:
|
84 |
-
current_day_data = data.loc[date.strftime('%Y-%m-%d')]
|
85 |
-
for hour in current_day_data['Hour'].unique():
|
86 |
-
if hour in quantiles.index:
|
87 |
-
hour_quantile = quantiles[hour]
|
88 |
-
idx = (data.index.normalize() == date) & (data.Hour == hour)
|
89 |
-
data.loc[idx, 'Quantile_80'] = hour_quantile
|
90 |
-
data.loc[idx, 'Lower_Interval'] = data.loc[idx, my_forecast] - hour_quantile
|
91 |
-
data.loc[idx, 'Upper_Interval'] = data.loc[idx, my_forecast] + hour_quantile
|
92 |
-
#data.reset_index(inplace=True)
|
93 |
-
return data
|
94 |
-
|
95 |
-
|
96 |
-
st.title("Transparency++")
|
97 |
-
|
98 |
-
countries = {
|
99 |
-
'Belgium': 'BE',
|
100 |
-
'Netherlands': 'NL',
|
101 |
-
'Germany': 'DE',
|
102 |
-
'France': 'FR',
|
103 |
-
}
|
104 |
-
|
105 |
-
|
106 |
-
st.sidebar.header('Filters')
|
107 |
-
|
108 |
-
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))
|
109 |
-
|
110 |
-
|
111 |
-
st.write()
|
112 |
-
date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:",
|
113 |
-
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))
|
114 |
-
|
115 |
-
# Ensure the date range provides two dates
|
116 |
-
if len(date_range) == 2:
|
117 |
-
start_date = pd.Timestamp(date_range[0])
|
118 |
-
end_date = pd.Timestamp(date_range[1])
|
119 |
-
else:
|
120 |
-
st.error("Please select a valid date range.")
|
121 |
-
st.stop()
|
122 |
-
|
123 |
-
# Sidebar with radio buttons for different sections
|
124 |
-
section = st.sidebar.radio('Section', ['Data', 'Forecasts', 'Insights'])
|
125 |
-
|
126 |
-
|
127 |
-
country_code = countries[selected_country]
|
128 |
-
if country_code == 'BE':
|
129 |
-
data = Data_BE
|
130 |
-
weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore']
|
131 |
-
data['Temperature'] = data['temperature_2m_8']
|
132 |
-
data['Wind Speed Offshore'] = data['wind_speed_100m_4']
|
133 |
-
data['Wind Speed Onshore'] = data['wind_speed_100m_8']
|
134 |
-
|
135 |
-
elif country_code == 'DE':
|
136 |
-
data = Data_DE
|
137 |
-
weather_columns = ['Temperature', 'Wind Speed']
|
138 |
-
data['Temperature'] = data['temperature_2m']
|
139 |
-
data['Wind Speed'] = data['wind_speed_100m']
|
140 |
-
|
141 |
-
elif country_code == 'NL':
|
142 |
-
data = Data_NL
|
143 |
-
weather_columns = ['Temperature', 'Wind Speed']
|
144 |
-
data['Temperature'] = data['temperature_2m']
|
145 |
-
data['Wind Speed'] = data['wind_speed_100m']
|
146 |
-
|
147 |
-
elif country_code == 'FR':
|
148 |
-
data = Data_FR
|
149 |
-
weather_columns = ['Temperature', 'Wind Speed']
|
150 |
-
data['Temperature'] = data['temperature_2m']
|
151 |
-
data['Wind Speed'] = data['wind_speed_100m']
|
152 |
-
|
153 |
-
def add_feature(df2, df_main):
|
154 |
-
#df_main.index = pd.to_datetime(df_main.index)
|
155 |
-
#df2.index = pd.to_datetime(df2.index)
|
156 |
-
df_combined = df_main.combine_first(df2)
|
157 |
-
last_date_df1 = df_main.index.max()
|
158 |
-
first_date_df2 = df2.index.min()
|
159 |
-
if first_date_df2 == last_date_df1 + pd.Timedelta(hours=1):
|
160 |
-
df_combined = pd.concat([df_main, df2[df2.index > last_date_df1]], axis=0)
|
161 |
-
#df_combined.reset_index(inplace=True)
|
162 |
-
return df_combined
|
163 |
-
#data.index = data.index.tz_localize('UTC')
|
164 |
-
data = data.loc[start_date:end_date]
|
165 |
-
|
166 |
-
forecast_columns = [
|
167 |
-
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
168 |
-
|
169 |
-
if section == 'Data':
|
170 |
-
st.header("Data")
|
171 |
-
st.write("""
|
172 |
-
This section allows you to explore and upload your datasets.
|
173 |
-
You can visualize raw data, clean it, and prepare it for analysis.
|
174 |
-
""")
|
175 |
-
|
176 |
-
st.header('Data Quality')
|
177 |
-
|
178 |
-
output_text = f"The below percentages are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar."
|
179 |
-
st.write(output_text)
|
180 |
-
|
181 |
-
# Report % of missing values
|
182 |
-
missing_values = data[forecast_columns].isna().mean() * 100
|
183 |
-
missing_values = missing_values.round(2)
|
184 |
-
|
185 |
-
installed_capacities = {
|
186 |
-
'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134},
|
187 |
-
'DE': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915},
|
188 |
-
'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053},
|
189 |
-
'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190},
|
190 |
-
}
|
191 |
-
|
192 |
-
if country_code not in installed_capacities:
|
193 |
-
st.error(f"Installed capacities not defined for country code '{country_code}'.")
|
194 |
-
st.stop()
|
195 |
-
|
196 |
-
|
197 |
-
# Report % of extreme, impossible values for the selected country
|
198 |
-
capacities = installed_capacities[country_code]
|
199 |
-
extreme_values = {}
|
200 |
-
|
201 |
-
for col in forecast_columns:
|
202 |
-
if 'Solar_entsoe' in col:
|
203 |
-
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Solar'])).mean() * 100
|
204 |
-
elif 'Solar_forecast_entsoe' in col:
|
205 |
-
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Solar'])).mean() * 100
|
206 |
-
elif 'Wind_onshore_entsoe' in col:
|
207 |
-
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Onshore'])).mean() * 100
|
208 |
-
elif 'Wind_onshore_forecast_entsoe' in col:
|
209 |
-
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Onshore'])).mean() * 100
|
210 |
-
elif 'Wind_offshore_entsoe' in col:
|
211 |
-
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Offshore'])).mean() * 100
|
212 |
-
elif 'Wind_offshore_forecast_entsoe' in col:
|
213 |
-
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Offshore'])).mean() * 100
|
214 |
-
elif 'Load_entsoe' in col:
|
215 |
-
extreme_values[col] = ((data[col] < 0)).mean() * 100
|
216 |
-
elif 'Load_forecast_entsoe' in col:
|
217 |
-
extreme_values[col] = ((data[col] < 0)).mean() * 100
|
218 |
-
|
219 |
-
|
220 |
-
extreme_values = pd.Series(extreme_values).round(2)
|
221 |
-
|
222 |
-
# Combine all metrics into one DataFrame
|
223 |
-
metrics_df = pd.DataFrame({
|
224 |
-
'Missing Values (%)': missing_values,
|
225 |
-
'Extreme/Nonsensical Values (%)': extreme_values,
|
226 |
-
})
|
227 |
-
|
228 |
-
st.markdown(
|
229 |
-
"""
|
230 |
-
<style>
|
231 |
-
.dataframe {font-size: 45px !important;}
|
232 |
-
</style>
|
233 |
-
""",
|
234 |
-
unsafe_allow_html=True
|
235 |
-
)
|
236 |
-
|
237 |
-
st.dataframe(metrics_df)
|
238 |
-
|
239 |
-
st.write('<b><u>Missing values (%)</u></b>: Percentage of missing values in the dataset', unsafe_allow_html=True)
|
240 |
-
st.write('<b><u>Extreme/Nonsensical values (%)</u></b>: Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True)
|
241 |
-
|
242 |
-
# Section 2: Forecasts
|
243 |
-
elif section == 'Forecasts':
|
244 |
-
|
245 |
-
st.header('Forecast Quality')
|
246 |
-
|
247 |
-
# Time series for last 1 week
|
248 |
-
st.subheader('Time Series: Last 1 Week')
|
249 |
-
last_week = Data_BE.loc[Data_BE.index >= (data.index[-1] - pd.Timedelta(days=7))]
|
250 |
-
st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform between the selected data range.')
|
251 |
-
forecast_columns_operational = [
|
252 |
-
'Load_entsoe','Load_forecast_entsoe', 'Load_LightGBMModel.7D.TimeCov.Temp.Forecast_elia', 'Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_onshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Wind_offshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Solar_entsoe','Solar_forecast_entsoe', 'Solar_LightGBMModel.1D.TimeCov.Temp.Forecast_elia']
|
253 |
-
forecast_columns = [
|
254 |
-
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
255 |
-
|
256 |
-
operation_forecast_load=forecast_dict['Predictions_10h.csv'].filter(like='Load_', axis=1)
|
257 |
-
operation_forecast_res=forecast_dict['Predictions_17h.csv'].filter(regex='^(?!Load_)')
|
258 |
-
operation_forecast_load.columns = [col.replace('_entsoe.', '_').replace('Naive.7D', 'WeeklyNaiveSeasonal') for col in operation_forecast_load.columns]
|
259 |
-
operation_forecast_res.columns = [col.replace('_entsoe.', '_').replace('Naive.1D', 'DailyNaiveSeasonal') for col in operation_forecast_res.columns]
|
260 |
-
Historical_and_Load=add_feature(operation_forecast_load, historical_forecast)
|
261 |
-
Historical_and_operational=add_feature(operation_forecast_res, Historical_and_Load)
|
262 |
-
#print(Historical_and_operational.filter(like='Forecast_elia', axis=1))
|
263 |
-
best_forecast = Historical_and_operational.filter(like='Forecast_elia', axis=1)
|
264 |
-
df_combined = Historical_and_operational.join(Data_BE, how='inner')
|
265 |
-
last_week_best_forecast = best_forecast.loc[best_forecast.index >= (best_forecast.index[-24] - pd.Timedelta(days=8))]
|
266 |
-
|
267 |
-
|
268 |
-
for i in range(0, len(forecast_columns_operational), 3):
|
269 |
-
actual_col = forecast_columns_operational[i]
|
270 |
-
forecast_col = forecast_columns_operational[i + 1]
|
271 |
-
my_forecast = forecast_columns_operational[i + 2]
|
272 |
-
|
273 |
-
|
274 |
-
if forecast_col in data.columns:
|
275 |
-
fig = go.Figure()
|
276 |
-
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual'))
|
277 |
-
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E'))
|
278 |
-
|
279 |
-
if country_code=='BE':
|
280 |
-
conformal=conformal_predictions(df_combined, actual_col, my_forecast)
|
281 |
-
last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=8))]
|
282 |
-
if actual_col =='Load_entsoe':
|
283 |
-
last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=5))]
|
284 |
-
fig.add_trace(go.Scatter(x=last_week_best_forecast.index, y=last_week_best_forecast[my_forecast], mode='lines', name='Forecast EDS'))
|
285 |
-
|
286 |
-
fig.add_trace(go.Scatter(
|
287 |
-
x=last_week_conformal.index,
|
288 |
-
y=last_week_conformal['Lower_Interval'],
|
289 |
-
mode='lines',
|
290 |
-
line=dict(width=0),
|
291 |
-
showlegend=False
|
292 |
-
))
|
293 |
-
|
294 |
-
# Add the upper interval trace and fill to the lower interval
|
295 |
-
fig.add_trace(go.Scatter(
|
296 |
-
x=last_week_conformal.index,
|
297 |
-
y=last_week_conformal['Upper_Interval'],
|
298 |
-
mode='lines',
|
299 |
-
line=dict(width=0),
|
300 |
-
fill='tonexty', # Fill between this trace and the previous one
|
301 |
-
fillcolor='rgba(68, 68, 68, 0.3)',
|
302 |
-
name='P10/P90 prediction intervals'
|
303 |
-
))
|
304 |
-
|
305 |
-
|
306 |
-
fig.update_layout(title=f'Forecasts vs Actual for {actual_col}', xaxis_title='Date', yaxis_title='Value [MW]')
|
307 |
-
|
308 |
-
st.plotly_chart(fig)
|
309 |
-
|
310 |
-
|
311 |
-
def plot_category(df_dict, category_prefix, title):
|
312 |
-
fig = go.Figure()
|
313 |
-
|
314 |
-
# Define base colors for each model
|
315 |
-
model_colors = {
|
316 |
-
'LightGBMModel.TimeCov.Temp.Forecast_elia': '#1f77b4', # Blue
|
317 |
-
'LightGBMModel.TimeCov.Temp': '#2ca02c', # Green
|
318 |
-
'Naive': '#ff7f0e' # Orange
|
319 |
-
}
|
320 |
-
|
321 |
-
# To keep track of which model has been added to the legend
|
322 |
-
legend_added = {'LightGBMModel.TimeCov.Temp.Forecast_elia': False, 'LightGBMModel.TimeCov.Temp': False, 'Naive': False}
|
323 |
-
|
324 |
-
for file_name, df in df_dict.items():
|
325 |
-
# Extract the hour from the filename, assuming the format is "Predictions_Xh.csv"
|
326 |
-
hour = int(file_name.split('_')[1].replace('h.csv', ''))
|
327 |
-
|
328 |
-
filtered_columns = [col for col in df.columns if col.startswith(category_prefix)]
|
329 |
-
for column in filtered_columns:
|
330 |
-
# Identify the model type with more precise logic
|
331 |
-
if 'LightGBMModel' in column:
|
332 |
-
if 'Forecast_elia' in column:
|
333 |
-
model_key = 'LightGBMModel.TimeCov.Temp.Forecast_elia'
|
334 |
-
elif 'TimeCov' in column:
|
335 |
-
model_key = 'LightGBMModel.TimeCov.Temp'
|
336 |
-
elif 'Naive' in column:
|
337 |
-
model_key = 'Naive'
|
338 |
-
else:
|
339 |
-
continue # Skip if it doesn't match any model type
|
340 |
-
|
341 |
-
# Extract the relevant part of the model name
|
342 |
-
parts = column.split('.')
|
343 |
-
model_name_parts = parts[1:] # Skip the variable prefix
|
344 |
-
model_name = '.'.join(model_name_parts) # Rejoin the parts to form the model name
|
345 |
-
|
346 |
-
# Get the base color for the model
|
347 |
-
base_color = model_colors[model_key]
|
348 |
-
|
349 |
-
# Calculate the color shade based on the hour
|
350 |
-
color_scale = pc.hex_to_rgb(base_color)
|
351 |
-
scale_factor = 0.3 + (hour / 40) # Adjust scale to ensure the gradient is visible
|
352 |
-
adjusted_color = tuple(int(c * scale_factor) for c in color_scale)
|
353 |
-
# Convert to RGBA with transparency for plot lines
|
354 |
-
line_color = f'rgba({adjusted_color[0]}, {adjusted_color[1]}, {adjusted_color[2]}, 0.1)' # Transparent color for lines
|
355 |
-
|
356 |
-
# Combine the hour and the model name for the legend, but only add the legend entry once
|
357 |
-
show_legend = not legend_added[model_key]
|
358 |
-
|
359 |
-
fig.add_trace(go.Scatter(
|
360 |
-
x=df.index, # Assuming 'Date' is the index, use 'df.index' for x-axis
|
361 |
-
y=df[column],
|
362 |
-
mode='lines',
|
363 |
-
name=model_name if show_legend else None, # Use the model name for the legend, but only once
|
364 |
-
line=dict(color=base_color if show_legend else line_color), # Use opaque color for legend, transparent for lines
|
365 |
-
showlegend=show_legend, # Show legend only once per model
|
366 |
-
legendgroup=model_key # Grouping for consistent legend color
|
367 |
-
))
|
368 |
-
|
369 |
-
# Mark that this model has been added to the legend
|
370 |
-
if show_legend:
|
371 |
-
legend_added[model_key] = True
|
372 |
-
|
373 |
-
# Add real values as a separate trace, if provided
|
374 |
-
filtered_Data_BE_df = Data_BE.loc[df.index]
|
375 |
-
|
376 |
-
if filtered_Data_BE_df[f'{category_prefix}_entsoe'].notna().any():
|
377 |
-
fig.add_trace(go.Scatter(
|
378 |
-
x=filtered_Data_BE_df.index,
|
379 |
-
y=filtered_Data_BE_df[f'{category_prefix}_entsoe'],
|
380 |
-
mode='lines',
|
381 |
-
name=f'Actual {category_prefix}',
|
382 |
-
line=dict(color='black', width=2), # Black line for real values
|
383 |
-
showlegend=True # Always show this in the legend
|
384 |
-
))
|
385 |
-
|
386 |
-
# Update layout to position the legend at the top, side by side
|
387 |
-
fig.update_layout(
|
388 |
-
title=dict(
|
389 |
-
text=title,
|
390 |
-
x=0, # Center the title horizontally
|
391 |
-
y=1.00, # Slightly lower the title to create more space
|
392 |
-
xanchor='left',
|
393 |
-
yanchor='top'
|
394 |
-
),
|
395 |
-
xaxis_title='Date',
|
396 |
-
yaxis_title='Value',
|
397 |
-
legend=dict(
|
398 |
-
orientation="h", # Horizontal legend
|
399 |
-
yanchor="bottom", # Align to the bottom of the legend box
|
400 |
-
y=1, # Increase y position to avoid overlap with the title
|
401 |
-
xanchor="center", # Center the legend horizontally
|
402 |
-
x=0.5 # Position at the center of the plot
|
403 |
-
)
|
404 |
-
)
|
405 |
-
return fig
|
406 |
-
|
407 |
-
if country_code == "BE":
|
408 |
-
st.header('EDS Forecasts by Hour')
|
409 |
-
|
410 |
-
solar_fig = plot_category(forecast_dict, 'Solar', 'Solar Predictions')
|
411 |
-
st.plotly_chart(solar_fig)
|
412 |
-
|
413 |
-
wind_offshore_fig = plot_category(forecast_dict, 'Wind_offshore', 'Wind Offshore Predictions')
|
414 |
-
st.plotly_chart(wind_offshore_fig)
|
415 |
-
|
416 |
-
wind_onshore_fig = plot_category(forecast_dict, 'Wind_onshore', 'Wind Onshore Predictions')
|
417 |
-
st.plotly_chart(wind_onshore_fig)
|
418 |
-
|
419 |
-
load_fig = plot_category(forecast_dict, 'Load', 'Load Predictions')
|
420 |
-
st.plotly_chart(load_fig)
|
421 |
-
|
422 |
-
# Scatter plots for error distribution
|
423 |
-
st.subheader('Error Distribution')
|
424 |
-
st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
|
425 |
-
for i in range(0, len(forecast_columns), 2):
|
426 |
-
actual_col = forecast_columns[i]
|
427 |
-
forecast_col = forecast_columns[i + 1]
|
428 |
-
if forecast_col in data.columns:
|
429 |
-
obs = last_week[actual_col]
|
430 |
-
pred = last_week[forecast_col]
|
431 |
-
error = pred - obs
|
432 |
-
|
433 |
-
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
|
434 |
-
fig.update_layout(title=f'Error Distribution for {forecast_col}')
|
435 |
-
st.plotly_chart(fig)
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
st.subheader('Accuracy Metrics (Sorted by rMAE):')
|
440 |
-
|
441 |
-
if country_code == "BE":
|
442 |
-
|
443 |
-
# Combine the two DataFrames on their index
|
444 |
-
df_combined = Historical_and_operational.join(Data_BE, how='inner')
|
445 |
-
# List of model columns from historical_forecast
|
446 |
-
model_columns = historical_forecast.columns
|
447 |
-
|
448 |
-
# Initialize dictionaries to store MAE and RMSE results for each variable
|
449 |
-
results_wind_onshore = {}
|
450 |
-
results_wind_offshore = {}
|
451 |
-
results_load = {}
|
452 |
-
results_solar = {}
|
453 |
-
|
454 |
-
# Mapping of variables to their corresponding naive models
|
455 |
-
naive_models = {
|
456 |
-
'Wind_onshore': 'Wind_onshore_DailyNaiveSeasonal',
|
457 |
-
'Wind_offshore': 'Wind_offshore_DailyNaiveSeasonal',
|
458 |
-
'Load': 'Load_WeeklyNaiveSeasonal',
|
459 |
-
'Solar': 'Solar_DailyNaiveSeasonal'
|
460 |
-
}
|
461 |
-
|
462 |
-
# Step 1: Calculate MAE, RMSE, and rMAE for each model
|
463 |
-
for col in model_columns:
|
464 |
-
# Extract the variable name by taking everything before the first underscore
|
465 |
-
base_variable = col.split('_')[0]
|
466 |
-
|
467 |
-
# Handle cases where variable names might be combined with multiple parts (e.g., "Load_LightGBMModel...")
|
468 |
-
if base_variable in ['Wind', 'Load', 'Solar']:
|
469 |
-
if 'onshore' in col:
|
470 |
-
variable_name = 'Wind_onshore'
|
471 |
-
results_dict = results_wind_onshore
|
472 |
-
elif 'offshore' in col:
|
473 |
-
variable_name = 'Wind_offshore'
|
474 |
-
results_dict = results_wind_offshore
|
475 |
-
else:
|
476 |
-
variable_name = base_variable
|
477 |
-
results_dict = results_load if base_variable == 'Load' else results_solar
|
478 |
-
else:
|
479 |
-
variable_name = base_variable
|
480 |
-
|
481 |
-
# Construct the corresponding `variable_entsoe` column name
|
482 |
-
entsoe_column = f'{variable_name}_entsoe'
|
483 |
-
naive_model_col = naive_models.get(variable_name, None)
|
484 |
-
|
485 |
-
# Drop NaNs for the specific pair of columns before calculating MAE and RMSE
|
486 |
-
if entsoe_column in df_combined.columns and naive_model_col in df_combined.columns:
|
487 |
-
valid_data = df_combined[[col, entsoe_column]].dropna()
|
488 |
-
valid_naive_data = df_combined[[entsoe_column, naive_model_col]].dropna()
|
489 |
-
|
490 |
-
# Calculate MAE and RMSE for the model against the `variable_entsoe`
|
491 |
-
mae = np.mean(abs(valid_data[col] - valid_data[entsoe_column]))
|
492 |
-
rmse = np.sqrt(mean_squared_error(valid_data[col], valid_data[entsoe_column]))
|
493 |
-
|
494 |
-
# Calculate MAE for the Naive model
|
495 |
-
mae_naive = np.mean(abs(valid_naive_data[entsoe_column] - valid_naive_data[naive_model_col]))
|
496 |
-
|
497 |
-
# Calculate rMAE for the model
|
498 |
-
rMAE = mae / mae_naive if mae_naive != 0 else np.inf
|
499 |
-
|
500 |
-
# Store the results in the corresponding dictionary
|
501 |
-
results_dict[f'{col}'] = {'MAE': mae, 'RMSE': rmse, 'rMAE': rMAE}
|
502 |
-
|
503 |
-
# Step 2: Calculate MAE, RMSE, and rMAE for ENTSO-E forecasts specifically
|
504 |
-
for variable_name in naive_models.keys():
|
505 |
-
entsoe_column = f'{variable_name}_entsoe'
|
506 |
-
forecast_entsoe_column = f'{variable_name}_forecast_entsoe'
|
507 |
-
naive_model_col = naive_models[variable_name]
|
508 |
-
|
509 |
-
# Ensure that the ENTSO-E forecast is included in the results
|
510 |
-
if forecast_entsoe_column in df_combined.columns:
|
511 |
-
valid_data = df_combined[[forecast_entsoe_column, entsoe_column]].dropna()
|
512 |
-
valid_naive_data = df_combined[[entsoe_column, naive_model_col]].dropna()
|
513 |
-
|
514 |
-
# Calculate MAE and RMSE for the ENTSO-E forecast against the actuals
|
515 |
-
mae_entsoe = np.mean(abs(valid_data[forecast_entsoe_column] - valid_data[entsoe_column]))
|
516 |
-
rmse_entsoe = np.sqrt(mean_squared_error(valid_data[forecast_entsoe_column], valid_data[entsoe_column]))
|
517 |
-
|
518 |
-
# Calculate rMAE for the ENTSO-E forecast
|
519 |
-
mae_naive = np.mean(abs(valid_naive_data[entsoe_column] - valid_naive_data[naive_model_col]))
|
520 |
-
rMAE_entsoe = mae_entsoe / mae_naive if mae_naive != 0 else np.inf
|
521 |
-
|
522 |
-
# Add the ENTSO-E results to the corresponding dictionary
|
523 |
-
if variable_name == 'Wind_onshore':
|
524 |
-
results_wind_onshore[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
|
525 |
-
elif variable_name == 'Wind_offshore':
|
526 |
-
results_wind_offshore[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
|
527 |
-
elif variable_name == 'Load':
|
528 |
-
results_load[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
|
529 |
-
elif variable_name == 'Solar':
|
530 |
-
results_solar[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
|
531 |
-
|
532 |
-
# Convert the dictionaries to DataFrames and sort by rMAE
|
533 |
-
df_wind_onshore = pd.DataFrame.from_dict(results_wind_onshore, orient='index').sort_values(by='rMAE')
|
534 |
-
df_wind_offshore = pd.DataFrame.from_dict(results_wind_offshore, orient='index').sort_values(by='rMAE')
|
535 |
-
df_load = pd.DataFrame.from_dict(results_load, orient='index').sort_values(by='rMAE')
|
536 |
-
df_solar = pd.DataFrame.from_dict(results_solar, orient='index').sort_values(by='rMAE')
|
537 |
-
|
538 |
-
|
539 |
-
st.write("##### Wind Onshore:")
|
540 |
-
st.dataframe(df_wind_onshore)
|
541 |
-
|
542 |
-
st.write("##### Wind Offshore:")
|
543 |
-
st.dataframe(df_wind_offshore)
|
544 |
-
|
545 |
-
st.write("##### Load:")
|
546 |
-
st.dataframe(df_load)
|
547 |
-
|
548 |
-
st.write("##### Solar:")
|
549 |
-
st.dataframe(df_solar)
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
else:
|
554 |
-
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])
|
555 |
-
|
556 |
-
for i in range(0, len(forecast_columns), 2):
|
557 |
-
actual_col = forecast_columns[i]
|
558 |
-
forecast_col = forecast_columns[i + 1]
|
559 |
-
if forecast_col in data.columns:
|
560 |
-
obs = data[actual_col]
|
561 |
-
pred = data[forecast_col]
|
562 |
-
error = pred - obs
|
563 |
-
|
564 |
-
mae = round(np.mean(np.abs(error)),2)
|
565 |
-
if 'Load' in actual_col:
|
566 |
-
persistence = obs.shift(168) # Weekly persistence
|
567 |
-
else:
|
568 |
-
persistence = obs.shift(24) # Daily persistence
|
569 |
-
|
570 |
-
# Using the whole year's data for rMAE calculations
|
571 |
-
rmae = round(mae / np.mean(np.abs(obs - persistence)),2)
|
572 |
-
|
573 |
-
row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore'
|
574 |
-
accuracy_metrics.loc[row_label] = [mae, rmae]
|
575 |
-
|
576 |
-
accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column)
|
577 |
-
accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True)
|
578 |
-
accuracy_metrics = accuracy_metrics.round(4)
|
579 |
-
|
580 |
-
col1, col2 = st.columns([3, 2])
|
581 |
-
|
582 |
-
with col1:
|
583 |
-
st.dataframe(accuracy_metrics)
|
584 |
-
|
585 |
-
with col2:
|
586 |
-
st.markdown("""
|
587 |
-
<style>
|
588 |
-
.big-font {
|
589 |
-
font-size: 20px;
|
590 |
-
font-weight: 500;
|
591 |
-
}
|
592 |
-
</style>
|
593 |
-
<div class="big-font">
|
594 |
-
Equations
|
595 |
-
</div>
|
596 |
-
""", unsafe_allow_html=True)
|
597 |
-
|
598 |
-
st.markdown(r"""
|
599 |
-
$\text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$
|
600 |
-
|
601 |
-
|
602 |
-
$\text{rMAE} = \frac{\text{MAE}}{MAE_{\text{Persistence Model}}}$
|
603 |
-
|
604 |
-
|
605 |
-
""")
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
st.subheader('ACF plots of Errors')
|
610 |
-
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three fields: Solar, Wind and Load.')
|
611 |
-
|
612 |
-
for i in range(0, len(forecast_columns), 2):
|
613 |
-
actual_col = forecast_columns[i]
|
614 |
-
forecast_col = forecast_columns[i + 1]
|
615 |
-
if forecast_col in data.columns:
|
616 |
-
obs = data[actual_col]
|
617 |
-
pred = data[forecast_col]
|
618 |
-
error = pred - obs
|
619 |
-
|
620 |
-
st.write(f"**ACF of Errors for {actual_col}**")
|
621 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
622 |
-
plot_acf(error.dropna(), ax=ax)
|
623 |
-
st.pyplot(fig)
|
624 |
-
|
625 |
-
acf_values = acf(error.dropna(), nlags=240)
|
626 |
-
|
627 |
-
# Section 3: Insights
|
628 |
-
elif section == 'Insights':
|
629 |
-
st.header("Insights")
|
630 |
-
st.write("""
|
631 |
-
This section provides insights derived from the data and forecasts.
|
632 |
-
You can visualize trends, anomalies, and other important findings.
|
633 |
-
""")
|
634 |
-
|
635 |
-
# Scatter plots for correlation between wind, solar, and load
|
636 |
-
st.subheader('Correlation between Wind, Solar, and Load')
|
637 |
-
st.write('The below scatter plots for correlation between all three fields: Solar, Wind and Load.')
|
638 |
-
|
639 |
-
combinations = [('Solar_entsoe', 'Load_entsoe'), ('Wind_onshore_entsoe', 'Load_entsoe'), ('Wind_offshore_entsoe', 'Load_entsoe'), ('Solar_entsoe', 'Wind_onshore_entsoe'), ('Solar_entsoe', 'Wind_offshore_entsoe')]
|
640 |
-
|
641 |
-
for x_col, y_col in combinations:
|
642 |
-
if x_col in data.columns and y_col in data.columns:
|
643 |
-
# For solar combinations, filter out zero values
|
644 |
-
if 'Solar_entsoe' in x_col:
|
645 |
-
filtered_data = data[data['Solar_entsoe'] > 0]
|
646 |
-
x_values = filtered_data[x_col]
|
647 |
-
y_values = filtered_data[y_col]
|
648 |
-
else:
|
649 |
-
x_values = data[x_col]
|
650 |
-
y_values = data[y_col]
|
651 |
-
|
652 |
-
corr_coef = x_values.corr(y_values)
|
653 |
-
fig = px.scatter(
|
654 |
-
x=x_values,
|
655 |
-
y=y_values,
|
656 |
-
labels={'x': f'{x_col} [MW]', 'y': f'{y_col} [MW]'},
|
657 |
-
title=f'{x_col} vs {y_col} (Correlation: {corr_coef:.2f})', color_discrete_sequence=['grey'])
|
658 |
-
st.plotly_chart(fig)
|
659 |
-
|
660 |
-
|
661 |
-
st.subheader('Weather vs. Generation/Demand')
|
662 |
-
st.write('The below scatter plots show the relation between weather parameters (i.e., Temperature, Wind Speed) and generation/demand.')
|
663 |
-
|
664 |
-
for weather_col in weather_columns:
|
665 |
-
for actual_col in ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe', 'Wind_offshore_entsoe']:
|
666 |
-
if weather_col in data.columns and actual_col in data.columns:
|
667 |
-
clean_label = actual_col.replace('_entsoe', '')
|
668 |
-
if weather_col == 'Temperature':
|
669 |
-
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (°C)', 'y': f'{clean_label} Generation [MW]'}, color_discrete_sequence=['orange'])
|
670 |
-
else:
|
671 |
-
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (km/h)', 'y': clean_label})
|
672 |
-
fig.update_layout(title=f'{weather_col} vs {actual_col}')
|
673 |
-
st.plotly_chart(fig)
|
674 |
-
|
675 |
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
from io import StringIO
|
4 |
+
import streamlit as st
|
5 |
+
import os
|
6 |
+
import plotly.express as px
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
import plotly.colors as pc
|
9 |
+
import numpy as np
|
10 |
+
from sklearn.metrics import mean_squared_error
|
11 |
+
from statsmodels.tsa.stattools import acf
|
12 |
+
from statsmodels.graphics.tsaplots import plot_acf
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
|
16 |
+
##GET ALL FILES FROM GITHUB
|
17 |
+
def load_GitHub(github_token, file_name):
|
18 |
+
url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}'
|
19 |
+
headers = {'Authorization': f'token {github_token}'}
|
20 |
+
|
21 |
+
response = requests.get(url, headers=headers)
|
22 |
+
|
23 |
+
if response.status_code == 200:
|
24 |
+
csv_content = StringIO(response.text)
|
25 |
+
df = pd.read_csv(csv_content)
|
26 |
+
if 'Date' in df.columns:
|
27 |
+
df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime
|
28 |
+
df.set_index('Date', inplace=True) # Set 'Date' column as the index
|
29 |
+
#df.to_csv(file_name)
|
30 |
+
return df
|
31 |
+
else:
|
32 |
+
print(f"Failed to download {file_name}. Status code: {response.status_code}")
|
33 |
+
return None
|
34 |
+
|
35 |
+
def load_forecast(github_token):
|
36 |
+
predictions_dict = {}
|
37 |
+
for hour in range(24):
|
38 |
+
file_name = f'Predictions_{hour}h.csv'
|
39 |
+
df = load_GitHub(github_token, file_name)
|
40 |
+
if df is not None:
|
41 |
+
predictions_dict[file_name] = df
|
42 |
+
return predictions_dict
|
43 |
+
|
44 |
+
def convert_European_time(data, time_zone):
|
45 |
+
data.index = pd.to_datetime(data.index, utc=True)
|
46 |
+
data.index = data.index.tz_convert(time_zone)
|
47 |
+
data.index = data.index.tz_localize(None)
|
48 |
+
return data
|
49 |
+
|
50 |
+
github_token = st.secrets["GitHub_Token_KUL_Margarida"]
|
51 |
+
|
52 |
+
if github_token:
|
53 |
+
forecast_dict = load_forecast(github_token)
|
54 |
+
|
55 |
+
historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv')
|
56 |
+
|
57 |
+
Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv')
|
58 |
+
Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv')
|
59 |
+
Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv')
|
60 |
+
Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv')
|
61 |
+
|
62 |
+
Data_BE=convert_European_time(Data_BE, 'Europe/Brussels')
|
63 |
+
Data_FR=convert_European_time(Data_FR, 'Europe/Paris')
|
64 |
+
Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam')
|
65 |
+
Data_DE=convert_European_time(Data_DE, 'Europe/Berlin')
|
66 |
+
|
67 |
+
|
68 |
+
else:
|
69 |
+
print("Please enter your GitHub Personal Access Token to proceed.")
|
70 |
+
|
71 |
+
def conformal_predictions(data, target, my_forecast):
|
72 |
+
data['Residuals'] = data[my_forecast] - data[actual_col]
|
73 |
+
data['Hour'] = data.index.hour
|
74 |
+
|
75 |
+
min_date = data.index.min()
|
76 |
+
for date in data.index.normalize().unique():
|
77 |
+
if date >= min_date + pd.DateOffset(days=30):
|
78 |
+
start_date = date - pd.DateOffset(days=30)
|
79 |
+
end_date = date
|
80 |
+
calculation_window = data[start_date:end_date-pd.DateOffset(hours=1)]
|
81 |
+
quantiles = calculation_window.groupby('Hour')['Residuals'].quantile(0.8)
|
82 |
+
# Use .loc to safely access and modify data
|
83 |
+
if date in data.index:
|
84 |
+
current_day_data = data.loc[date.strftime('%Y-%m-%d')]
|
85 |
+
for hour in current_day_data['Hour'].unique():
|
86 |
+
if hour in quantiles.index:
|
87 |
+
hour_quantile = quantiles[hour]
|
88 |
+
idx = (data.index.normalize() == date) & (data.Hour == hour)
|
89 |
+
data.loc[idx, 'Quantile_80'] = hour_quantile
|
90 |
+
data.loc[idx, 'Lower_Interval'] = data.loc[idx, my_forecast] - hour_quantile
|
91 |
+
data.loc[idx, 'Upper_Interval'] = data.loc[idx, my_forecast] + hour_quantile
|
92 |
+
#data.reset_index(inplace=True)
|
93 |
+
return data
|
94 |
+
|
95 |
+
|
96 |
+
st.title("Transparency++")
|
97 |
+
|
98 |
+
countries = {
|
99 |
+
'Belgium': 'BE',
|
100 |
+
'Netherlands': 'NL',
|
101 |
+
'Germany': 'DE',
|
102 |
+
'France': 'FR',
|
103 |
+
}
|
104 |
+
|
105 |
+
|
106 |
+
st.sidebar.header('Filters')
|
107 |
+
|
108 |
+
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))
|
109 |
+
|
110 |
+
|
111 |
+
st.write()
|
112 |
+
date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:",
|
113 |
+
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))
|
114 |
+
|
115 |
+
# Ensure the date range provides two dates
|
116 |
+
if len(date_range) == 2:
|
117 |
+
start_date = pd.Timestamp(date_range[0])
|
118 |
+
end_date = pd.Timestamp(date_range[1])
|
119 |
+
else:
|
120 |
+
st.error("Please select a valid date range.")
|
121 |
+
st.stop()
|
122 |
+
|
123 |
+
# Sidebar with radio buttons for different sections
|
124 |
+
section = st.sidebar.radio('Section', ['Data', 'Forecasts', 'Insights'])
|
125 |
+
|
126 |
+
|
127 |
+
country_code = countries[selected_country]
|
128 |
+
if country_code == 'BE':
|
129 |
+
data = Data_BE
|
130 |
+
weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore']
|
131 |
+
data['Temperature'] = data['temperature_2m_8']
|
132 |
+
data['Wind Speed Offshore'] = data['wind_speed_100m_4']
|
133 |
+
data['Wind Speed Onshore'] = data['wind_speed_100m_8']
|
134 |
+
|
135 |
+
elif country_code == 'DE':
|
136 |
+
data = Data_DE
|
137 |
+
weather_columns = ['Temperature', 'Wind Speed']
|
138 |
+
data['Temperature'] = data['temperature_2m']
|
139 |
+
data['Wind Speed'] = data['wind_speed_100m']
|
140 |
+
|
141 |
+
elif country_code == 'NL':
|
142 |
+
data = Data_NL
|
143 |
+
weather_columns = ['Temperature', 'Wind Speed']
|
144 |
+
data['Temperature'] = data['temperature_2m']
|
145 |
+
data['Wind Speed'] = data['wind_speed_100m']
|
146 |
+
|
147 |
+
elif country_code == 'FR':
|
148 |
+
data = Data_FR
|
149 |
+
weather_columns = ['Temperature', 'Wind Speed']
|
150 |
+
data['Temperature'] = data['temperature_2m']
|
151 |
+
data['Wind Speed'] = data['wind_speed_100m']
|
152 |
+
|
153 |
+
def add_feature(df2, df_main):
|
154 |
+
#df_main.index = pd.to_datetime(df_main.index)
|
155 |
+
#df2.index = pd.to_datetime(df2.index)
|
156 |
+
df_combined = df_main.combine_first(df2)
|
157 |
+
last_date_df1 = df_main.index.max()
|
158 |
+
first_date_df2 = df2.index.min()
|
159 |
+
if first_date_df2 == last_date_df1 + pd.Timedelta(hours=1):
|
160 |
+
df_combined = pd.concat([df_main, df2[df2.index > last_date_df1]], axis=0)
|
161 |
+
#df_combined.reset_index(inplace=True)
|
162 |
+
return df_combined
|
163 |
+
#data.index = data.index.tz_localize('UTC')
|
164 |
+
data = data.loc[start_date:end_date]
|
165 |
+
|
166 |
+
forecast_columns = [
|
167 |
+
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
168 |
+
|
169 |
+
if section == 'Data':
|
170 |
+
st.header("Data")
|
171 |
+
st.write("""
|
172 |
+
This section allows you to explore and upload your datasets.
|
173 |
+
You can visualize raw data, clean it, and prepare it for analysis.
|
174 |
+
""")
|
175 |
+
|
176 |
+
st.header('Data Quality')
|
177 |
+
|
178 |
+
output_text = f"The below percentages are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar."
|
179 |
+
st.write(output_text)
|
180 |
+
|
181 |
+
# Report % of missing values
|
182 |
+
missing_values = data[forecast_columns].isna().mean() * 100
|
183 |
+
missing_values = missing_values.round(2)
|
184 |
+
|
185 |
+
installed_capacities = {
|
186 |
+
'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134},
|
187 |
+
'DE': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915},
|
188 |
+
'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053},
|
189 |
+
'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190},
|
190 |
+
}
|
191 |
+
|
192 |
+
if country_code not in installed_capacities:
|
193 |
+
st.error(f"Installed capacities not defined for country code '{country_code}'.")
|
194 |
+
st.stop()
|
195 |
+
|
196 |
+
|
197 |
+
# Report % of extreme, impossible values for the selected country
|
198 |
+
capacities = installed_capacities[country_code]
|
199 |
+
extreme_values = {}
|
200 |
+
|
201 |
+
for col in forecast_columns:
|
202 |
+
if 'Solar_entsoe' in col:
|
203 |
+
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Solar'])).mean() * 100
|
204 |
+
elif 'Solar_forecast_entsoe' in col:
|
205 |
+
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Solar'])).mean() * 100
|
206 |
+
elif 'Wind_onshore_entsoe' in col:
|
207 |
+
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Onshore'])).mean() * 100
|
208 |
+
elif 'Wind_onshore_forecast_entsoe' in col:
|
209 |
+
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Onshore'])).mean() * 100
|
210 |
+
elif 'Wind_offshore_entsoe' in col:
|
211 |
+
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Offshore'])).mean() * 100
|
212 |
+
elif 'Wind_offshore_forecast_entsoe' in col:
|
213 |
+
extreme_values[col] = ((data[col] < 0) | (data[col] > capacities['Wind Offshore'])).mean() * 100
|
214 |
+
elif 'Load_entsoe' in col:
|
215 |
+
extreme_values[col] = ((data[col] < 0)).mean() * 100
|
216 |
+
elif 'Load_forecast_entsoe' in col:
|
217 |
+
extreme_values[col] = ((data[col] < 0)).mean() * 100
|
218 |
+
|
219 |
+
|
220 |
+
extreme_values = pd.Series(extreme_values).round(2)
|
221 |
+
|
222 |
+
# Combine all metrics into one DataFrame
|
223 |
+
metrics_df = pd.DataFrame({
|
224 |
+
'Missing Values (%)': missing_values,
|
225 |
+
'Extreme/Nonsensical Values (%)': extreme_values,
|
226 |
+
})
|
227 |
+
|
228 |
+
st.markdown(
|
229 |
+
"""
|
230 |
+
<style>
|
231 |
+
.dataframe {font-size: 45px !important;}
|
232 |
+
</style>
|
233 |
+
""",
|
234 |
+
unsafe_allow_html=True
|
235 |
+
)
|
236 |
+
|
237 |
+
st.dataframe(metrics_df)
|
238 |
+
|
239 |
+
st.write('<b><u>Missing values (%)</u></b>: Percentage of missing values in the dataset', unsafe_allow_html=True)
|
240 |
+
st.write('<b><u>Extreme/Nonsensical values (%)</u></b>: Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True)
|
241 |
+
|
242 |
+
# Section 2: Forecasts
|
243 |
+
elif section == 'Forecasts':
|
244 |
+
|
245 |
+
st.header('Forecast Quality')
|
246 |
+
|
247 |
+
# Time series for last 1 week
|
248 |
+
st.subheader('Time Series: Last 1 Week')
|
249 |
+
last_week = Data_BE.loc[Data_BE.index >= (data.index[-1] - pd.Timedelta(days=7))]
|
250 |
+
st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform between the selected data range.')
|
251 |
+
forecast_columns_operational = [
|
252 |
+
'Load_entsoe','Load_forecast_entsoe', 'Load_LightGBMModel.7D.TimeCov.Temp.Forecast_elia', 'Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_onshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Wind_offshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Solar_entsoe','Solar_forecast_entsoe', 'Solar_LightGBMModel.1D.TimeCov.Temp.Forecast_elia']
|
253 |
+
forecast_columns = [
|
254 |
+
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
255 |
+
|
256 |
+
operation_forecast_load=forecast_dict['Predictions_10h.csv'].filter(like='Load_', axis=1)
|
257 |
+
operation_forecast_res=forecast_dict['Predictions_17h.csv'].filter(regex='^(?!Load_)')
|
258 |
+
operation_forecast_load.columns = [col.replace('_entsoe.', '_').replace('Naive.7D', 'WeeklyNaiveSeasonal') for col in operation_forecast_load.columns]
|
259 |
+
operation_forecast_res.columns = [col.replace('_entsoe.', '_').replace('Naive.1D', 'DailyNaiveSeasonal') for col in operation_forecast_res.columns]
|
260 |
+
Historical_and_Load=add_feature(operation_forecast_load, historical_forecast)
|
261 |
+
Historical_and_operational=add_feature(operation_forecast_res, Historical_and_Load)
|
262 |
+
#print(Historical_and_operational.filter(like='Forecast_elia', axis=1))
|
263 |
+
best_forecast = Historical_and_operational.filter(like='Forecast_elia', axis=1)
|
264 |
+
df_combined = Historical_and_operational.join(Data_BE, how='inner')
|
265 |
+
last_week_best_forecast = best_forecast.loc[best_forecast.index >= (best_forecast.index[-24] - pd.Timedelta(days=8))]
|
266 |
+
|
267 |
+
|
268 |
+
for i in range(0, len(forecast_columns_operational), 3):
|
269 |
+
actual_col = forecast_columns_operational[i]
|
270 |
+
forecast_col = forecast_columns_operational[i + 1]
|
271 |
+
my_forecast = forecast_columns_operational[i + 2]
|
272 |
+
|
273 |
+
|
274 |
+
if forecast_col in data.columns:
|
275 |
+
fig = go.Figure()
|
276 |
+
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual'))
|
277 |
+
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E'))
|
278 |
+
|
279 |
+
if country_code=='BE':
|
280 |
+
conformal=conformal_predictions(df_combined, actual_col, my_forecast)
|
281 |
+
last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=8))]
|
282 |
+
if actual_col =='Load_entsoe':
|
283 |
+
last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=5))]
|
284 |
+
fig.add_trace(go.Scatter(x=last_week_best_forecast.index, y=last_week_best_forecast[my_forecast], mode='lines', name='Forecast EDS'))
|
285 |
+
|
286 |
+
fig.add_trace(go.Scatter(
|
287 |
+
x=last_week_conformal.index,
|
288 |
+
y=last_week_conformal['Lower_Interval'],
|
289 |
+
mode='lines',
|
290 |
+
line=dict(width=0),
|
291 |
+
showlegend=False
|
292 |
+
))
|
293 |
+
|
294 |
+
# Add the upper interval trace and fill to the lower interval
|
295 |
+
fig.add_trace(go.Scatter(
|
296 |
+
x=last_week_conformal.index,
|
297 |
+
y=last_week_conformal['Upper_Interval'],
|
298 |
+
mode='lines',
|
299 |
+
line=dict(width=0),
|
300 |
+
fill='tonexty', # Fill between this trace and the previous one
|
301 |
+
fillcolor='rgba(68, 68, 68, 0.3)',
|
302 |
+
name='P10/P90 prediction intervals'
|
303 |
+
))
|
304 |
+
|
305 |
+
|
306 |
+
fig.update_layout(title=f'Forecasts vs Actual for {actual_col}', xaxis_title='Date', yaxis_title='Value [MW]')
|
307 |
+
|
308 |
+
st.plotly_chart(fig)
|
309 |
+
|
310 |
+
|
311 |
+
def plot_category(df_dict, category_prefix, title):
|
312 |
+
fig = go.Figure()
|
313 |
+
|
314 |
+
# Define base colors for each model
|
315 |
+
model_colors = {
|
316 |
+
'LightGBMModel.TimeCov.Temp.Forecast_elia': '#1f77b4', # Blue
|
317 |
+
'LightGBMModel.TimeCov.Temp': '#2ca02c', # Green
|
318 |
+
'Naive': '#ff7f0e' # Orange
|
319 |
+
}
|
320 |
+
|
321 |
+
# To keep track of which model has been added to the legend
|
322 |
+
legend_added = {'LightGBMModel.TimeCov.Temp.Forecast_elia': False, 'LightGBMModel.TimeCov.Temp': False, 'Naive': False}
|
323 |
+
|
324 |
+
for file_name, df in df_dict.items():
|
325 |
+
# Extract the hour from the filename, assuming the format is "Predictions_Xh.csv"
|
326 |
+
hour = int(file_name.split('_')[1].replace('h.csv', ''))
|
327 |
+
|
328 |
+
filtered_columns = [col for col in df.columns if col.startswith(category_prefix)]
|
329 |
+
for column in filtered_columns:
|
330 |
+
# Identify the model type with more precise logic
|
331 |
+
if 'LightGBMModel' in column:
|
332 |
+
if 'Forecast_elia' in column:
|
333 |
+
model_key = 'LightGBMModel.TimeCov.Temp.Forecast_elia'
|
334 |
+
elif 'TimeCov' in column:
|
335 |
+
model_key = 'LightGBMModel.TimeCov.Temp'
|
336 |
+
elif 'Naive' in column:
|
337 |
+
model_key = 'Naive'
|
338 |
+
else:
|
339 |
+
continue # Skip if it doesn't match any model type
|
340 |
+
|
341 |
+
# Extract the relevant part of the model name
|
342 |
+
parts = column.split('.')
|
343 |
+
model_name_parts = parts[1:] # Skip the variable prefix
|
344 |
+
model_name = '.'.join(model_name_parts) # Rejoin the parts to form the model name
|
345 |
+
|
346 |
+
# Get the base color for the model
|
347 |
+
base_color = model_colors[model_key]
|
348 |
+
|
349 |
+
# Calculate the color shade based on the hour
|
350 |
+
color_scale = pc.hex_to_rgb(base_color)
|
351 |
+
scale_factor = 0.3 + (hour / 40) # Adjust scale to ensure the gradient is visible
|
352 |
+
adjusted_color = tuple(int(c * scale_factor) for c in color_scale)
|
353 |
+
# Convert to RGBA with transparency for plot lines
|
354 |
+
line_color = f'rgba({adjusted_color[0]}, {adjusted_color[1]}, {adjusted_color[2]}, 0.1)' # Transparent color for lines
|
355 |
+
|
356 |
+
# Combine the hour and the model name for the legend, but only add the legend entry once
|
357 |
+
show_legend = not legend_added[model_key]
|
358 |
+
|
359 |
+
fig.add_trace(go.Scatter(
|
360 |
+
x=df.index, # Assuming 'Date' is the index, use 'df.index' for x-axis
|
361 |
+
y=df[column],
|
362 |
+
mode='lines',
|
363 |
+
name=model_name if show_legend else None, # Use the model name for the legend, but only once
|
364 |
+
line=dict(color=base_color if show_legend else line_color), # Use opaque color for legend, transparent for lines
|
365 |
+
showlegend=show_legend, # Show legend only once per model
|
366 |
+
legendgroup=model_key # Grouping for consistent legend color
|
367 |
+
))
|
368 |
+
|
369 |
+
# Mark that this model has been added to the legend
|
370 |
+
if show_legend:
|
371 |
+
legend_added[model_key] = True
|
372 |
+
|
373 |
+
# Add real values as a separate trace, if provided
|
374 |
+
filtered_Data_BE_df = Data_BE.loc[df.index]
|
375 |
+
|
376 |
+
if filtered_Data_BE_df[f'{category_prefix}_entsoe'].notna().any():
|
377 |
+
fig.add_trace(go.Scatter(
|
378 |
+
x=filtered_Data_BE_df.index,
|
379 |
+
y=filtered_Data_BE_df[f'{category_prefix}_entsoe'],
|
380 |
+
mode='lines',
|
381 |
+
name=f'Actual {category_prefix}',
|
382 |
+
line=dict(color='black', width=2), # Black line for real values
|
383 |
+
showlegend=True # Always show this in the legend
|
384 |
+
))
|
385 |
+
|
386 |
+
# Update layout to position the legend at the top, side by side
|
387 |
+
fig.update_layout(
|
388 |
+
title=dict(
|
389 |
+
text=title,
|
390 |
+
x=0, # Center the title horizontally
|
391 |
+
y=1.00, # Slightly lower the title to create more space
|
392 |
+
xanchor='left',
|
393 |
+
yanchor='top'
|
394 |
+
),
|
395 |
+
xaxis_title='Date',
|
396 |
+
yaxis_title='Value',
|
397 |
+
legend=dict(
|
398 |
+
orientation="h", # Horizontal legend
|
399 |
+
yanchor="bottom", # Align to the bottom of the legend box
|
400 |
+
y=1, # Increase y position to avoid overlap with the title
|
401 |
+
xanchor="center", # Center the legend horizontally
|
402 |
+
x=0.5 # Position at the center of the plot
|
403 |
+
)
|
404 |
+
)
|
405 |
+
return fig
|
406 |
+
|
407 |
+
if country_code == "BE":
|
408 |
+
st.header('EDS Forecasts by Hour')
|
409 |
+
|
410 |
+
solar_fig = plot_category(forecast_dict, 'Solar', 'Solar Predictions')
|
411 |
+
st.plotly_chart(solar_fig)
|
412 |
+
|
413 |
+
wind_offshore_fig = plot_category(forecast_dict, 'Wind_offshore', 'Wind Offshore Predictions')
|
414 |
+
st.plotly_chart(wind_offshore_fig)
|
415 |
+
|
416 |
+
wind_onshore_fig = plot_category(forecast_dict, 'Wind_onshore', 'Wind Onshore Predictions')
|
417 |
+
st.plotly_chart(wind_onshore_fig)
|
418 |
+
|
419 |
+
load_fig = plot_category(forecast_dict, 'Load', 'Load Predictions')
|
420 |
+
st.plotly_chart(load_fig)
|
421 |
+
|
422 |
+
# Scatter plots for error distribution
|
423 |
+
st.subheader('Error Distribution')
|
424 |
+
st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
|
425 |
+
for i in range(0, len(forecast_columns), 2):
|
426 |
+
actual_col = forecast_columns[i]
|
427 |
+
forecast_col = forecast_columns[i + 1]
|
428 |
+
if forecast_col in data.columns:
|
429 |
+
obs = last_week[actual_col]
|
430 |
+
pred = last_week[forecast_col]
|
431 |
+
error = pred - obs
|
432 |
+
|
433 |
+
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
|
434 |
+
fig.update_layout(title=f'Error Distribution for {forecast_col}')
|
435 |
+
st.plotly_chart(fig)
|
436 |
+
|
437 |
+
|
438 |
+
|
439 |
+
st.subheader('Accuracy Metrics (Sorted by rMAE):')
|
440 |
+
|
441 |
+
if country_code == "BE":
|
442 |
+
|
443 |
+
# Combine the two DataFrames on their index
|
444 |
+
df_combined = Historical_and_operational.join(Data_BE, how='inner')
|
445 |
+
# List of model columns from historical_forecast
|
446 |
+
model_columns = historical_forecast.columns
|
447 |
+
|
448 |
+
# Initialize dictionaries to store MAE and RMSE results for each variable
|
449 |
+
results_wind_onshore = {}
|
450 |
+
results_wind_offshore = {}
|
451 |
+
results_load = {}
|
452 |
+
results_solar = {}
|
453 |
+
|
454 |
+
# Mapping of variables to their corresponding naive models
|
455 |
+
naive_models = {
|
456 |
+
'Wind_onshore': 'Wind_onshore_DailyNaiveSeasonal',
|
457 |
+
'Wind_offshore': 'Wind_offshore_DailyNaiveSeasonal',
|
458 |
+
'Load': 'Load_WeeklyNaiveSeasonal',
|
459 |
+
'Solar': 'Solar_DailyNaiveSeasonal'
|
460 |
+
}
|
461 |
+
|
462 |
+
# Step 1: Calculate MAE, RMSE, and rMAE for each model
|
463 |
+
for col in model_columns:
|
464 |
+
# Extract the variable name by taking everything before the first underscore
|
465 |
+
base_variable = col.split('_')[0]
|
466 |
+
|
467 |
+
# Handle cases where variable names might be combined with multiple parts (e.g., "Load_LightGBMModel...")
|
468 |
+
if base_variable in ['Wind', 'Load', 'Solar']:
|
469 |
+
if 'onshore' in col:
|
470 |
+
variable_name = 'Wind_onshore'
|
471 |
+
results_dict = results_wind_onshore
|
472 |
+
elif 'offshore' in col:
|
473 |
+
variable_name = 'Wind_offshore'
|
474 |
+
results_dict = results_wind_offshore
|
475 |
+
else:
|
476 |
+
variable_name = base_variable
|
477 |
+
results_dict = results_load if base_variable == 'Load' else results_solar
|
478 |
+
else:
|
479 |
+
variable_name = base_variable
|
480 |
+
|
481 |
+
# Construct the corresponding `variable_entsoe` column name
|
482 |
+
entsoe_column = f'{variable_name}_entsoe'
|
483 |
+
naive_model_col = naive_models.get(variable_name, None)
|
484 |
+
|
485 |
+
# Drop NaNs for the specific pair of columns before calculating MAE and RMSE
|
486 |
+
if entsoe_column in df_combined.columns and naive_model_col in df_combined.columns:
|
487 |
+
valid_data = df_combined[[col, entsoe_column]].dropna()
|
488 |
+
valid_naive_data = df_combined[[entsoe_column, naive_model_col]].dropna()
|
489 |
+
|
490 |
+
# Calculate MAE and RMSE for the model against the `variable_entsoe`
|
491 |
+
mae = np.mean(abs(valid_data[col] - valid_data[entsoe_column]))
|
492 |
+
rmse = np.sqrt(mean_squared_error(valid_data[col], valid_data[entsoe_column]))
|
493 |
+
|
494 |
+
# Calculate MAE for the Naive model
|
495 |
+
mae_naive = np.mean(abs(valid_naive_data[entsoe_column] - valid_naive_data[naive_model_col]))
|
496 |
+
|
497 |
+
# Calculate rMAE for the model
|
498 |
+
rMAE = mae / mae_naive if mae_naive != 0 else np.inf
|
499 |
+
|
500 |
+
# Store the results in the corresponding dictionary
|
501 |
+
results_dict[f'{col}'] = {'MAE': mae, 'RMSE': rmse, 'rMAE': rMAE}
|
502 |
+
|
503 |
+
# Step 2: Calculate MAE, RMSE, and rMAE for ENTSO-E forecasts specifically
|
504 |
+
for variable_name in naive_models.keys():
|
505 |
+
entsoe_column = f'{variable_name}_entsoe'
|
506 |
+
forecast_entsoe_column = f'{variable_name}_forecast_entsoe'
|
507 |
+
naive_model_col = naive_models[variable_name]
|
508 |
+
|
509 |
+
# Ensure that the ENTSO-E forecast is included in the results
|
510 |
+
if forecast_entsoe_column in df_combined.columns:
|
511 |
+
valid_data = df_combined[[forecast_entsoe_column, entsoe_column]].dropna()
|
512 |
+
valid_naive_data = df_combined[[entsoe_column, naive_model_col]].dropna()
|
513 |
+
|
514 |
+
# Calculate MAE and RMSE for the ENTSO-E forecast against the actuals
|
515 |
+
mae_entsoe = np.mean(abs(valid_data[forecast_entsoe_column] - valid_data[entsoe_column]))
|
516 |
+
rmse_entsoe = np.sqrt(mean_squared_error(valid_data[forecast_entsoe_column], valid_data[entsoe_column]))
|
517 |
+
|
518 |
+
# Calculate rMAE for the ENTSO-E forecast
|
519 |
+
mae_naive = np.mean(abs(valid_naive_data[entsoe_column] - valid_naive_data[naive_model_col]))
|
520 |
+
rMAE_entsoe = mae_entsoe / mae_naive if mae_naive != 0 else np.inf
|
521 |
+
|
522 |
+
# Add the ENTSO-E results to the corresponding dictionary
|
523 |
+
if variable_name == 'Wind_onshore':
|
524 |
+
results_wind_onshore[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
|
525 |
+
elif variable_name == 'Wind_offshore':
|
526 |
+
results_wind_offshore[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
|
527 |
+
elif variable_name == 'Load':
|
528 |
+
results_load[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
|
529 |
+
elif variable_name == 'Solar':
|
530 |
+
results_solar[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe}
|
531 |
+
|
532 |
+
# Convert the dictionaries to DataFrames and sort by rMAE
|
533 |
+
df_wind_onshore = pd.DataFrame.from_dict(results_wind_onshore, orient='index').sort_values(by='rMAE')
|
534 |
+
df_wind_offshore = pd.DataFrame.from_dict(results_wind_offshore, orient='index').sort_values(by='rMAE')
|
535 |
+
df_load = pd.DataFrame.from_dict(results_load, orient='index').sort_values(by='rMAE')
|
536 |
+
df_solar = pd.DataFrame.from_dict(results_solar, orient='index').sort_values(by='rMAE')
|
537 |
+
|
538 |
+
|
539 |
+
st.write("##### Wind Onshore:")
|
540 |
+
st.dataframe(df_wind_onshore)
|
541 |
+
|
542 |
+
st.write("##### Wind Offshore:")
|
543 |
+
st.dataframe(df_wind_offshore)
|
544 |
+
|
545 |
+
st.write("##### Load:")
|
546 |
+
st.dataframe(df_load)
|
547 |
+
|
548 |
+
st.write("##### Solar:")
|
549 |
+
st.dataframe(df_solar)
|
550 |
+
|
551 |
+
|
552 |
+
|
553 |
+
else:
|
554 |
+
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])
|
555 |
+
|
556 |
+
for i in range(0, len(forecast_columns), 2):
|
557 |
+
actual_col = forecast_columns[i]
|
558 |
+
forecast_col = forecast_columns[i + 1]
|
559 |
+
if forecast_col in data.columns:
|
560 |
+
obs = data[actual_col]
|
561 |
+
pred = data[forecast_col]
|
562 |
+
error = pred - obs
|
563 |
+
|
564 |
+
mae = round(np.mean(np.abs(error)),2)
|
565 |
+
if 'Load' in actual_col:
|
566 |
+
persistence = obs.shift(168) # Weekly persistence
|
567 |
+
else:
|
568 |
+
persistence = obs.shift(24) # Daily persistence
|
569 |
+
|
570 |
+
# Using the whole year's data for rMAE calculations
|
571 |
+
rmae = round(mae / np.mean(np.abs(obs - persistence)),2)
|
572 |
+
|
573 |
+
row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore'
|
574 |
+
accuracy_metrics.loc[row_label] = [mae, rmae]
|
575 |
+
|
576 |
+
accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column)
|
577 |
+
accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True)
|
578 |
+
accuracy_metrics = accuracy_metrics.round(4)
|
579 |
+
|
580 |
+
col1, col2 = st.columns([3, 2])
|
581 |
+
|
582 |
+
with col1:
|
583 |
+
st.dataframe(accuracy_metrics)
|
584 |
+
|
585 |
+
with col2:
|
586 |
+
st.markdown("""
|
587 |
+
<style>
|
588 |
+
.big-font {
|
589 |
+
font-size: 20px;
|
590 |
+
font-weight: 500;
|
591 |
+
}
|
592 |
+
</style>
|
593 |
+
<div class="big-font">
|
594 |
+
Equations
|
595 |
+
</div>
|
596 |
+
""", unsafe_allow_html=True)
|
597 |
+
|
598 |
+
st.markdown(r"""
|
599 |
+
$\text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$
|
600 |
+
|
601 |
+
|
602 |
+
$\text{rMAE} = \frac{\text{MAE}}{MAE_{\text{Persistence Model}}}$
|
603 |
+
|
604 |
+
|
605 |
+
""")
|
606 |
+
|
607 |
+
|
608 |
+
|
609 |
+
st.subheader('ACF plots of Errors')
|
610 |
+
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three fields: Solar, Wind and Load.')
|
611 |
+
|
612 |
+
for i in range(0, len(forecast_columns), 2):
|
613 |
+
actual_col = forecast_columns[i]
|
614 |
+
forecast_col = forecast_columns[i + 1]
|
615 |
+
if forecast_col in data.columns:
|
616 |
+
obs = data[actual_col]
|
617 |
+
pred = data[forecast_col]
|
618 |
+
error = pred - obs
|
619 |
+
|
620 |
+
st.write(f"**ACF of Errors for {actual_col}**")
|
621 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
622 |
+
plot_acf(error.dropna(), ax=ax)
|
623 |
+
st.pyplot(fig)
|
624 |
+
|
625 |
+
acf_values = acf(error.dropna(), nlags=240)
|
626 |
+
|
627 |
+
# Section 3: Insights
|
628 |
+
elif section == 'Insights':
|
629 |
+
st.header("Insights")
|
630 |
+
st.write("""
|
631 |
+
This section provides insights derived from the data and forecasts.
|
632 |
+
You can visualize trends, anomalies, and other important findings.
|
633 |
+
""")
|
634 |
+
|
635 |
+
# Scatter plots for correlation between wind, solar, and load
|
636 |
+
st.subheader('Correlation between Wind, Solar, and Load')
|
637 |
+
st.write('The below scatter plots for correlation between all three fields: Solar, Wind and Load.')
|
638 |
+
|
639 |
+
combinations = [('Solar_entsoe', 'Load_entsoe'), ('Wind_onshore_entsoe', 'Load_entsoe'), ('Wind_offshore_entsoe', 'Load_entsoe'), ('Solar_entsoe', 'Wind_onshore_entsoe'), ('Solar_entsoe', 'Wind_offshore_entsoe')]
|
640 |
+
|
641 |
+
for x_col, y_col in combinations:
|
642 |
+
if x_col in data.columns and y_col in data.columns:
|
643 |
+
# For solar combinations, filter out zero values
|
644 |
+
if 'Solar_entsoe' in x_col:
|
645 |
+
filtered_data = data[data['Solar_entsoe'] > 0]
|
646 |
+
x_values = filtered_data[x_col]
|
647 |
+
y_values = filtered_data[y_col]
|
648 |
+
else:
|
649 |
+
x_values = data[x_col]
|
650 |
+
y_values = data[y_col]
|
651 |
+
|
652 |
+
corr_coef = x_values.corr(y_values)
|
653 |
+
fig = px.scatter(
|
654 |
+
x=x_values,
|
655 |
+
y=y_values,
|
656 |
+
labels={'x': f'{x_col} [MW]', 'y': f'{y_col} [MW]'},
|
657 |
+
title=f'{x_col} vs {y_col} (Correlation: {corr_coef:.2f})', color_discrete_sequence=['grey'])
|
658 |
+
st.plotly_chart(fig)
|
659 |
+
|
660 |
+
|
661 |
+
st.subheader('Weather vs. Generation/Demand')
|
662 |
+
st.write('The below scatter plots show the relation between weather parameters (i.e., Temperature, Wind Speed) and generation/demand.')
|
663 |
+
|
664 |
+
for weather_col in weather_columns:
|
665 |
+
for actual_col in ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe', 'Wind_offshore_entsoe']:
|
666 |
+
if weather_col in data.columns and actual_col in data.columns:
|
667 |
+
clean_label = actual_col.replace('_entsoe', '')
|
668 |
+
if weather_col == 'Temperature':
|
669 |
+
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (°C)', 'y': f'{clean_label} Generation [MW]'}, color_discrete_sequence=['orange'])
|
670 |
+
else:
|
671 |
+
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (km/h)', 'y': clean_label})
|
672 |
+
fig.update_layout(title=f'{weather_col} vs {actual_col}')
|
673 |
+
st.plotly_chart(fig)
|
674 |
+
|
675 |
|