Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,16 @@ from statsmodels.graphics.tsaplots import plot_acf
|
|
13 |
import matplotlib.pyplot as plt
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
##GET ALL FILES FROM GITHUB
|
17 |
-
|
|
|
18 |
url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}'
|
19 |
headers = {'Authorization': f'token {github_token}'}
|
20 |
|
@@ -31,12 +39,13 @@ def load_GitHub(github_token, file_name):
|
|
31 |
else:
|
32 |
print(f"Failed to download {file_name}. Status code: {response.status_code}")
|
33 |
return None
|
34 |
-
|
35 |
-
|
|
|
36 |
predictions_dict = {}
|
37 |
for hour in range(24):
|
38 |
file_name = f'Predictions_{hour}h.csv'
|
39 |
-
df = load_GitHub(github_token, file_name)
|
40 |
if df is not None:
|
41 |
predictions_dict[file_name] = df
|
42 |
return predictions_dict
|
@@ -75,10 +84,12 @@ def simplify_model_names_in_index(df):
|
|
75 |
|
76 |
return df
|
77 |
|
|
|
|
|
78 |
github_token = st.secrets["GitHub_Token_KUL_Margarida"]
|
79 |
|
80 |
if github_token:
|
81 |
-
forecast_dict = load_forecast(github_token)
|
82 |
|
83 |
historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv')
|
84 |
|
@@ -140,12 +151,11 @@ upper_space.markdown("""
|
|
140 |
""", unsafe_allow_html=True)
|
141 |
|
142 |
|
143 |
-
|
144 |
countries = {
|
145 |
-
'Belgium': 'BE',
|
146 |
'Netherlands': 'NL',
|
147 |
'Germany': 'DE',
|
148 |
'France': 'FR',
|
|
|
149 |
}
|
150 |
|
151 |
|
@@ -231,9 +241,12 @@ if section == 'Data':
|
|
231 |
st.header('Data Quality')
|
232 |
|
233 |
st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.')
|
234 |
-
|
|
|
|
|
|
|
235 |
# Report % of missing values
|
236 |
-
missing_values =
|
237 |
missing_values = missing_values.round(2)
|
238 |
|
239 |
installed_capacities = {
|
@@ -254,21 +267,21 @@ if section == 'Data':
|
|
254 |
|
255 |
for col in forecast_columns:
|
256 |
if 'Solar_entsoe' in col:
|
257 |
-
extreme_values[col] = ((
|
258 |
elif 'Solar_forecast_entsoe' in col:
|
259 |
-
extreme_values[col] = ((
|
260 |
elif 'Wind_onshore_entsoe' in col:
|
261 |
-
extreme_values[col] = ((
|
262 |
elif 'Wind_onshore_forecast_entsoe' in col:
|
263 |
-
extreme_values[col] = ((
|
264 |
elif 'Wind_offshore_entsoe' in col:
|
265 |
-
extreme_values[col] = ((
|
266 |
elif 'Wind_offshore_forecast_entsoe' in col:
|
267 |
-
extreme_values[col] = ((
|
268 |
elif 'Load_entsoe' in col:
|
269 |
-
extreme_values[col] = ((
|
270 |
elif 'Load_forecast_entsoe' in col:
|
271 |
-
extreme_values[col] = ((
|
272 |
|
273 |
|
274 |
extreme_values = pd.Series(extreme_values).round(2)
|
@@ -300,29 +313,34 @@ elif section == 'Forecasts':
|
|
300 |
|
301 |
# Time series for last 1 week
|
302 |
st.subheader('Time Series: Last 1 Week')
|
303 |
-
last_week =
|
304 |
st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform between the selected data range.')
|
305 |
-
|
306 |
-
'Load_entsoe','Load_forecast_entsoe', 'Load_LightGBMModel.7D.TimeCov.Temp.Forecast_elia', 'Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_onshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Wind_offshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Solar_entsoe','Solar_forecast_entsoe', 'Solar_LightGBMModel.1D.TimeCov.Temp.Forecast_elia']
|
307 |
forecast_columns = [
|
308 |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
|
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
|
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
321 |
|
322 |
-
for i in range(0, len(
|
323 |
-
actual_col =
|
324 |
-
forecast_col =
|
325 |
-
|
|
|
326 |
|
327 |
|
328 |
if forecast_col in data.columns:
|
@@ -332,7 +350,7 @@ elif section == 'Forecasts':
|
|
332 |
|
333 |
if country_code=='BE':
|
334 |
conformal=conformal_predictions(df_combined, actual_col, my_forecast)
|
335 |
-
last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=
|
336 |
if actual_col =='Load_entsoe':
|
337 |
last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=5))]
|
338 |
fig.add_trace(go.Scatter(x=last_week_best_forecast.index, y=last_week_best_forecast[my_forecast], mode='lines', name='Forecast EDS'))
|
@@ -645,12 +663,13 @@ elif section == 'Forecasts':
|
|
645 |
# Scatter plots for error distribution
|
646 |
st.subheader('Error Distribution')
|
647 |
st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
|
|
|
648 |
for i in range(0, len(forecast_columns), 2):
|
649 |
actual_col = forecast_columns[i]
|
650 |
forecast_col = forecast_columns[i + 1]
|
651 |
-
if forecast_col in
|
652 |
-
obs =
|
653 |
-
pred =
|
654 |
error = pred - obs
|
655 |
|
656 |
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
|
@@ -905,5 +924,4 @@ elif section == 'Insights':
|
|
905 |
fig.update_layout(title=f'{weather_col} vs {actual_col}')
|
906 |
st.plotly_chart(fig)
|
907 |
|
908 |
-
|
909 |
|
|
|
13 |
import matplotlib.pyplot as plt
|
14 |
|
15 |
|
16 |
+
def get_current_time():
|
17 |
+
now = datetime.now()
|
18 |
+
current_hour = now.hour
|
19 |
+
current_minute = now.minute
|
20 |
+
# Return the hour and a boolean indicating if it is after the 10th minute
|
21 |
+
return current_hour, current_minute >= 10
|
22 |
+
|
23 |
##GET ALL FILES FROM GITHUB
|
24 |
+
@st.cache_data(show_spinner=False)
|
25 |
+
def load_GitHub(github_token, file_name, hour, after_10_min):
|
26 |
url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}'
|
27 |
headers = {'Authorization': f'token {github_token}'}
|
28 |
|
|
|
39 |
else:
|
40 |
print(f"Failed to download {file_name}. Status code: {response.status_code}")
|
41 |
return None
|
42 |
+
|
43 |
+
@st.cache_data(show_spinner=False)
|
44 |
+
def load_forecast(github_token, hour, after_10_min):
|
45 |
predictions_dict = {}
|
46 |
for hour in range(24):
|
47 |
file_name = f'Predictions_{hour}h.csv'
|
48 |
+
df = load_GitHub(github_token, file_name, hour, after_10_min)
|
49 |
if df is not None:
|
50 |
predictions_dict[file_name] = df
|
51 |
return predictions_dict
|
|
|
84 |
|
85 |
return df
|
86 |
|
87 |
+
current_hour, after_10_min = get_current_time()
|
88 |
+
|
89 |
github_token = st.secrets["GitHub_Token_KUL_Margarida"]
|
90 |
|
91 |
if github_token:
|
92 |
+
forecast_dict = load_forecast(github_token, current_hour, after_10_min)
|
93 |
|
94 |
historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv')
|
95 |
|
|
|
151 |
""", unsafe_allow_html=True)
|
152 |
|
153 |
|
|
|
154 |
countries = {
|
|
|
155 |
'Netherlands': 'NL',
|
156 |
'Germany': 'DE',
|
157 |
'France': 'FR',
|
158 |
+
'Belgium': 'BE',
|
159 |
}
|
160 |
|
161 |
|
|
|
241 |
st.header('Data Quality')
|
242 |
|
243 |
st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.')
|
244 |
+
data_quality=data.iloc[:-28]
|
245 |
+
if country_code=='BE':
|
246 |
+
data_quality=data.iloc[:-5*24]
|
247 |
+
print(data_quality.tail(48))
|
248 |
# Report % of missing values
|
249 |
+
missing_values = data_quality[forecast_columns].isna().mean() * 100
|
250 |
missing_values = missing_values.round(2)
|
251 |
|
252 |
installed_capacities = {
|
|
|
267 |
|
268 |
for col in forecast_columns:
|
269 |
if 'Solar_entsoe' in col:
|
270 |
+
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100
|
271 |
elif 'Solar_forecast_entsoe' in col:
|
272 |
+
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100
|
273 |
elif 'Wind_onshore_entsoe' in col:
|
274 |
+
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100
|
275 |
elif 'Wind_onshore_forecast_entsoe' in col:
|
276 |
+
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100
|
277 |
elif 'Wind_offshore_entsoe' in col:
|
278 |
+
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100
|
279 |
elif 'Wind_offshore_forecast_entsoe' in col:
|
280 |
+
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100
|
281 |
elif 'Load_entsoe' in col:
|
282 |
+
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100
|
283 |
elif 'Load_forecast_entsoe' in col:
|
284 |
+
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100
|
285 |
|
286 |
|
287 |
extreme_values = pd.Series(extreme_values).round(2)
|
|
|
313 |
|
314 |
# Time series for last 1 week
|
315 |
st.subheader('Time Series: Last 1 Week')
|
316 |
+
last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))]
|
317 |
st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform between the selected data range.')
|
318 |
+
|
|
|
319 |
forecast_columns = [
|
320 |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
321 |
+
num_per_var=2
|
322 |
|
323 |
+
if country_code=='BE':
|
324 |
+
operation_forecast_load=forecast_dict['Predictions_10h.csv'].filter(like='Load_', axis=1)
|
325 |
+
operation_forecast_res=forecast_dict['Predictions_17h.csv'].filter(regex='^(?!Load_)')
|
326 |
+
operation_forecast_load.columns = [col.replace('_entsoe.', '_').replace('Naive.7D', 'WeeklyNaiveSeasonal') for col in operation_forecast_load.columns]
|
327 |
+
operation_forecast_res.columns = [col.replace('_entsoe.', '_').replace('Naive.1D', 'DailyNaiveSeasonal') for col in operation_forecast_res.columns]
|
328 |
+
Historical_and_Load=add_feature(operation_forecast_load, historical_forecast)
|
329 |
+
Historical_and_operational=add_feature(operation_forecast_res, Historical_and_Load)
|
330 |
|
331 |
+
best_forecast = Historical_and_operational.filter(like='Forecast_elia', axis=1)
|
332 |
+
df_combined = Historical_and_operational.join(Data_BE, how='inner')
|
333 |
+
last_week_best_forecast = best_forecast.loc[best_forecast.index >= (best_forecast.index[-24] - pd.Timedelta(days=7))]
|
334 |
+
num_per_var=3
|
335 |
+
forecast_columns_line=['Load_entsoe','Load_forecast_entsoe', 'Load_LightGBMModel.7D.TimeCov.Temp.Forecast_elia', 'Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_onshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Wind_offshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Solar_entsoe','Solar_forecast_entsoe', 'Solar_LightGBMModel.1D.TimeCov.Temp.Forecast_elia']
|
336 |
+
else:
|
337 |
+
forecast_columns_line=forecast_columns
|
338 |
|
339 |
+
for i in range(0, len(forecast_columns_line), num_per_var):
|
340 |
+
actual_col = forecast_columns_line[i]
|
341 |
+
forecast_col = forecast_columns_line[i + 1]
|
342 |
+
if country_code=='BE':
|
343 |
+
my_forecast = forecast_columns_line[i + 2]
|
344 |
|
345 |
|
346 |
if forecast_col in data.columns:
|
|
|
350 |
|
351 |
if country_code=='BE':
|
352 |
conformal=conformal_predictions(df_combined, actual_col, my_forecast)
|
353 |
+
last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=7))]
|
354 |
if actual_col =='Load_entsoe':
|
355 |
last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=5))]
|
356 |
fig.add_trace(go.Scatter(x=last_week_best_forecast.index, y=last_week_best_forecast[my_forecast], mode='lines', name='Forecast EDS'))
|
|
|
663 |
# Scatter plots for error distribution
|
664 |
st.subheader('Error Distribution')
|
665 |
st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
|
666 |
+
data_2024 = data[data.index.year > 2023]
|
667 |
for i in range(0, len(forecast_columns), 2):
|
668 |
actual_col = forecast_columns[i]
|
669 |
forecast_col = forecast_columns[i + 1]
|
670 |
+
if forecast_col in data_2024.columns:
|
671 |
+
obs = data_2024[actual_col]
|
672 |
+
pred = data_2024[forecast_col]
|
673 |
error = pred - obs
|
674 |
|
675 |
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
|
|
|
924 |
fig.update_layout(title=f'{weather_col} vs {actual_col}')
|
925 |
st.plotly_chart(fig)
|
926 |
|
|
|
927 |
|