import requests import pandas as pd from io import StringIO import streamlit as st import os import plotly.express as px import plotly.graph_objects as go import plotly.colors as pc import numpy as np from sklearn.metrics import mean_squared_error from statsmodels.tsa.stattools import acf from statsmodels.graphics.tsaplots import plot_acf import matplotlib.pyplot as plt from datetime import datetime def get_current_time(): now = datetime.now() current_hour = now.hour current_minute = now.minute # Return the hour and a boolean indicating if it is after the 10th minute return current_hour, current_minute >= 10 ##GET ALL FILES FROM GITHUB @st.cache_data(show_spinner=False) def load_GitHub(github_token, file_name, hour, after_10_min): url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}' headers = {'Authorization': f'token {github_token}'} response = requests.get(url, headers=headers) if response.status_code == 200: csv_content = StringIO(response.text) df = pd.read_csv(csv_content) if 'Date' in df.columns: df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime df.set_index('Date', inplace=True) # Set 'Date' column as the index #df.to_csv(file_name) return df else: print(f"Failed to download {file_name}. Status code: {response.status_code}") return None @st.cache_data(show_spinner=False) def load_forecast(github_token, hour, after_10_min): predictions_dict = {} for hour in range(24): file_name = f'Predictions_{hour}h.csv' df = load_GitHub(github_token, file_name, hour, after_10_min) if df is not None: predictions_dict[file_name] = df return predictions_dict def convert_European_time(data, time_zone): data.index = pd.to_datetime(data.index, utc=True) data.index = data.index.tz_convert(time_zone) data.index = data.index.tz_localize(None) return data def simplify_model_names(df): # Define the mapping of complex names to simpler ones replacements = { r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', r'\.Naive\.\dD': '.Naive', } # Apply the replacements for original, simplified in replacements.items(): df.columns = df.columns.str.replace(original, simplified, regex=True) return df def simplify_model_names_in_index(df): # Define the mapping of complex names to simpler ones replacements = { r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', r'\.Naive\.\dD': '.Naive', } # Apply the replacements to the DataFrame index for original, simplified in replacements.items(): df.index = df.index.str.replace(original, simplified, regex=True) return df github_token = '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' if github_token: hour, after_10_min=get_current_time() forecast_dict = load_forecast(github_token, hour, after_10_min) historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv', hour, after_10_min) Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv', hour, after_10_min) Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv', hour, after_10_min) Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv', hour, after_10_min) Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv', hour, after_10_min) Data_BE=convert_European_time(Data_BE, 'Europe/Brussels') Data_FR=convert_European_time(Data_FR, 'Europe/Paris') Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam') Data_DE=convert_European_time(Data_DE, 'Europe/Berlin') else: print("Please enter your GitHub Personal Access Token to proceed.") # Main layout of the app col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs with col1: st.title("Transparency++") with col2: upper_space = col2.empty() upper_space = col2.empty() col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images with col2_1: st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed with col2_2: st.image("energyville_logo.png", width=100) upper_space.markdown("""     """, unsafe_allow_html=True) countries = { 'Overall': 'Overall', 'Netherlands': 'NL', 'Germany': 'DE', 'France': 'FR', 'Belgium': 'BE', } st.sidebar.header('Filters') st.sidebar.subheader("Select Country") st.sidebar.caption("Choose the country for which you want to display data or forecasts.") selected_country = st.sidebar.selectbox('Select Country', list(countries.keys())) # Ensure the date range provides two dates # Sidebar with radio buttons for different sections if selected_country != 'Overall': st.sidebar.subheader("Section") st.sidebar.caption("Select the type of information you want to explore.") section = st.sidebar.radio('', ['Data Quality', 'Forecasts Quality', 'Insights'], index=1) date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:", value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today')))) if len(date_range) == 2: start_date = pd.Timestamp(date_range[0]) end_date = pd.Timestamp(date_range[1]) else: st.error("Please select a valid date range.") st.stop() else: section = None # No section is shown when "Overall" is selected if selected_country == 'Overall': data = None # You can set data to None or a specific dataset based on your logic section = None # No section selected when "Overall" is chosen else: country_code = countries[selected_country] if country_code == 'BE': data = Data_BE weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore'] data['Temperature'] = data['temperature_2m_8'] data['Wind Speed Offshore'] = data['wind_speed_100m_4'] data['Wind Speed Onshore'] = data['wind_speed_100m_8'] elif country_code == 'DE': data = Data_DE weather_columns = ['Temperature', 'Wind Speed'] data['Temperature'] = data['temperature_2m'] data['Wind Speed'] = data['wind_speed_100m'] elif country_code == 'NL': data = Data_NL weather_columns = ['Temperature', 'Wind Speed'] data['Temperature'] = data['temperature_2m'] data['Wind Speed'] = data['wind_speed_100m'] elif country_code == 'FR': data = Data_FR weather_columns = ['Temperature', 'Wind Speed'] data['Temperature'] = data['temperature_2m'] data['Wind Speed'] = data['wind_speed_100m'] def add_feature(df2, df_main): #df_main.index = pd.to_datetime(df_main.index) #df2.index = pd.to_datetime(df2.index) df_combined = df_main.combine_first(df2) last_date_df1 = df_main.index.max() first_date_df2 = df2.index.min() if first_date_df2 == last_date_df1 + pd.Timedelta(hours=1): df_combined = pd.concat([df_main, df2[df2.index > last_date_df1]], axis=0) #df_combined.reset_index(inplace=True) return df_combined #data.index = data.index.tz_localize('UTC') forecast_columns = [ 'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] if section == 'Data Quality': st.header('Data Quality') st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.') data_quality=data.iloc[:-28] # Report % of missing values missing_values = data_quality[forecast_columns].isna().mean() * 100 missing_values = missing_values.round(2) installed_capacities = { 'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134}, 'DE': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915}, 'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053}, 'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190}, } if country_code not in installed_capacities: st.error(f"Installed capacities not defined for country code '{country_code}'.") st.stop() # Report % of extreme, impossible values for the selected country capacities = installed_capacities[country_code] extreme_values = {} for col in forecast_columns: if 'Solar_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 elif 'Solar_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 elif 'Wind_onshore_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 elif 'Wind_onshore_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 elif 'Wind_offshore_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 elif 'Wind_offshore_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 elif 'Load_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 elif 'Load_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 extreme_values = pd.Series(extreme_values).round(2) # Combine all metrics into one DataFrame metrics_df = pd.DataFrame({ 'Missing Values (%)': missing_values, 'Extreme/Nonsensical Values (%)': extreme_values, }) st.markdown( """ """, unsafe_allow_html=True ) st.dataframe(metrics_df) st.write('Missing values (%): Percentage of missing values in the dataset', unsafe_allow_html=True) st.write('Extreme/Nonsensical values (%): Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True) # Section 2: Forecasts elif section == 'Forecasts Quality': st.header('Forecast Quality') # Time series for last 1 week last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))] st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform from the past week.') num_per_var=2 forecast_columns_line=forecast_columns for i in range(0, len(forecast_columns_line), num_per_var): actual_col = forecast_columns_line[i] forecast_col = forecast_columns_line[i + 1] if forecast_col in data.columns: fig = go.Figure() fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual')) fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E')) fig.update_layout(title=f'Forecasts vs Actual for {actual_col}', xaxis_title='Date', yaxis_title='Value [MW]') st.plotly_chart(fig) # Scatter plots for error distribution st.subheader('Error Distribution') st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range') data_2024 = data[data.index.year > 2023] for i in range(0, len(forecast_columns), 2): actual_col = forecast_columns[i] forecast_col = forecast_columns[i + 1] if forecast_col in data_2024.columns: obs = data_2024[actual_col] pred = data_2024[forecast_col] error = pred - obs fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'}) fig.update_layout(title=f'Error Distribution for {forecast_col}') st.plotly_chart(fig) st.subheader('Accuracy Metrics (Sorted by rMAE):') output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar." st.write(output_text) data = data.loc[start_date:end_date] accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore']) for i in range(0, len(forecast_columns), 2): actual_col = forecast_columns[i] forecast_col = forecast_columns[i + 1] if forecast_col in data.columns: obs = data[actual_col] pred = data[forecast_col] error = pred - obs mae = round(np.mean(np.abs(error)),2) if 'Load' in actual_col: persistence = obs.shift(168) # Weekly persistence else: persistence = obs.shift(24) # Daily persistence # Using the whole year's data for rMAE calculations rmae = round(mae / np.mean(np.abs(obs - persistence)),2) row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore' accuracy_metrics.loc[row_label] = [mae, rmae] accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column) accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True) accuracy_metrics = accuracy_metrics.round(4) col1, col2 = st.columns([3, 2]) with col1: st.dataframe(accuracy_metrics) with col2: st.markdown("""
Equations
""", unsafe_allow_html=True) st.markdown(r""" $\text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$ $\text{rMAE} = \frac{\text{MAE}}{MAE_{\text{Persistence Model}}}$ """) st.subheader('ACF plots of Errors') st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.') for i in range(0, len(forecast_columns), 2): actual_col = forecast_columns[i] forecast_col = forecast_columns[i + 1] if forecast_col in data.columns: obs = data[actual_col] pred = data[forecast_col] error = pred - obs st.write(f"**ACF of Errors for {actual_col}**") fig, ax = plt.subplots(figsize=(10, 5)) plot_acf(error.dropna(), ax=ax) st.pyplot(fig) acf_values = acf(error.dropna(), nlags=240) # Section 3: Insights elif section == 'Insights': st.header("Insights") st.write(""" This section provides insights derived from the data and forecasts. You can visualize trends, anomalies, and other important findings. """) # Scatter plots for correlation between wind, solar, and load st.subheader('Correlation between Wind, Solar, Load and Weather Features') st.write('The below scatter plots are made for checking whether there exists a correlation between the data fields obtained: Solar, Wind, Load and Weather Features.') selected_columns=['Load_entsoe', 'Solar_entsoe', 'Wind_offshore_entsoe', 'Wind_onshore_entsoe'] + weather_columns selected_df=data[selected_columns] selected_df.columns = [col.replace('_entsoe', '').replace('_', ' ') for col in selected_df.columns] selected_df = selected_df.dropna() print(selected_df) sns.set_theme(style="ticks") pairplot_fig = sns.pairplot(selected_df) # Display the pairplot in Streamlit st.pyplot(pairplot_fig) elif selected_country == 'Overall': st.subheader("Net Load Error Map") st.write(""" The net load error map highlights the error in the forecasted versus actual net load for each country. Hover over each country to see details on the latest net load error and the timestamp of the last recorded data. """) def plot_net_load_error_map(data_dict): # Define forecast columns used in calculation def calculate_net_load_error(df): filter_df = df[forecast_columns].dropna() net_load = filter_df['Load_entsoe'] - filter_df['Wind_onshore_entsoe'] - filter_df['Wind_offshore_entsoe'] - filter_df['Solar_entsoe'] net_load_forecast = filter_df['Load_forecast_entsoe'] - filter_df['Wind_onshore_forecast_entsoe'] - filter_df['Wind_offshore_forecast_entsoe'] - filter_df['Solar_forecast_entsoe'] error = (net_load - net_load_forecast).iloc[-1] date = filter_df.index[-1].strftime("%Y-%m-%d %H:%M") # Get the latest date in string format return error, date # Calculate net load errors and dates for each country net_load_errors = {country_name: calculate_net_load_error(data) for country_name, data in data_dict.items()} # Create DataFrame for Folium with additional date column df_net_load_error = pd.DataFrame({ 'country': list(net_load_errors.keys()), 'net_load_error': [v[0] for v in net_load_errors.values()], 'date': [v[1] for v in net_load_errors.values()] }) # Load the GeoJSON file geojson_url = "https://raw.githubusercontent.com/python-visualization/folium/master/examples/data/world-countries.json" geo_data = requests.get(geojson_url).json() # Filter GeoJSON to only include the selected countries selected_countries = list(data_dict.keys()) # Get the list of selected countries (Belgium, France, Germany, Netherlands) filtered_geojson = { "type": "FeatureCollection", "features": [feature for feature in geo_data["features"] if feature["properties"]["name"] in selected_countries] } # Merge the geojson with the error and date data for feature in filtered_geojson["features"]: country_name = feature["properties"]["name"] row = df_net_load_error[df_net_load_error['country'] == country_name] if not row.empty: feature["properties"]["net_load_error"] = row.iloc[0]["net_load_error"] feature["properties"]["date"] = row.iloc[0]["date"] # Initialize the Folium map centered on Central Europe m = folium.Map(location=[51, 10], zoom_start=5, tiles="cartodb positron") # Add choropleth layer to map net load errors by country folium.Choropleth( geo_data=filtered_geojson, name="choropleth", data=df_net_load_error, columns=["country", "net_load_error"], key_on="feature.properties.name", fill_color="RdYlBu", # Use a more vibrant color palette fill_opacity=0.7, line_opacity=0.5, line_color="black", # Neutral border color legend_name="Net Load Error" ).add_to(m) # Add a GeoJson layer with custom tooltip for country, error, and date folium.GeoJson( filtered_geojson, style_function=lambda x: {'fillOpacity': 0, 'color': 'black', 'weight': 0}, tooltip=folium.GeoJsonTooltip( fields=["name", "net_load_error", "date"], aliases=["Country:", "Net Load Error:", "Date:"], localize=True ) ).add_to(m) # Display Folium map in Streamlit st_folium(m, width=700, height=600) # Data dictionary with full country names data_dict = { 'Belgium': Data_BE, 'France': Data_FR, 'Germany': Data_DE, 'Netherlands': Data_NL } # Call the function to plot the map plot_net_load_error_map(data_dict) st.subheader("rMAE of Forecasts published on ENTSO-E TP") st.write(""" The radar chart below compares the forecast accuracy across Load, Onshore Wind, Offshore Wind, and Solar for each country. """) def calculate_mae(actual, forecast): return np.mean(np.abs(actual - forecast)) # Function to calculate persistence MAE def calculate_persistence_mae(data, shift_hours): return np.mean(np.abs(data - data.shift(shift_hours))) # Function to calculate rMAE for each country def calculate_rmae_for_country(df): rmae = {} rmae['Load'] = calculate_mae(df['Load_entsoe'], df['Load_forecast_entsoe']) / calculate_persistence_mae(df['Load_entsoe'], 168) rmae['Wind_onshore'] = calculate_mae(df['Wind_onshore_entsoe'], df['Wind_onshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_onshore_entsoe'], 24) rmae['Wind_offshore'] = calculate_mae(df['Wind_offshore_entsoe'], df['Wind_offshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_offshore_entsoe'], 24) rmae['Solar'] = calculate_mae(df['Solar_entsoe'], df['Solar_forecast_entsoe']) / calculate_persistence_mae(df['Solar_entsoe'], 24) return rmae # Function to create rMAE DataFrame def create_rmae_dataframe(data_dict): rmae_values = {'Country': [], 'Load': [], 'Wind_onshore': [], 'Wind_offshore': [], 'Solar': []} for country_name, df in data_dict.items(): df_filtered = df[forecast_columns].dropna() rmae = calculate_rmae_for_country(df_filtered) rmae_values['Country'].append(country_name) for key in rmae: rmae_values[key].append(rmae[key]) return pd.DataFrame(rmae_values) # Function to plot radar chart def plot_rmae_radar_chart(rmae_df): fig = go.Figure() angles = ['Load', 'Wind_onshore', 'Wind_offshore', 'Solar'] for _, row in rmae_df.iterrows(): fig.add_trace(go.Scatterpolar(r=[row[angle] for angle in angles], theta=angles, fill='toself', name=row['Country'])) fig.update_layout(polar=dict(radialaxis=dict(visible=True, range=[0, 2])), showlegend=True, title="rMAE Radar Chart by Country") st.plotly_chart(fig) # Main execution to create and display radar plot rmae_df = create_rmae_dataframe(data_dict) plot_rmae_radar_chart(rmae_df)