import requests import pandas as pd from io import StringIO import streamlit as st import os import plotly.express as px import plotly.graph_objects as go import plotly.colors as pc import numpy as np from sklearn.metrics import mean_squared_error from statsmodels.tsa.stattools import acf from statsmodels.graphics.tsaplots import plot_acf import matplotlib.pyplot as plt from datetime import datetime def get_current_time(): now = datetime.now() current_hour = now.hour current_minute = now.minute # Return the hour and a boolean indicating if it is after the 10th minute return current_hour, current_minute >= 10 ##GET ALL FILES FROM GITHUB @st.cache_data(show_spinner=False) def load_GitHub(github_token, file_name, hour, after_10_min): url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}' headers = {'Authorization': f'token {github_token}'} response = requests.get(url, headers=headers) if response.status_code == 200: csv_content = StringIO(response.text) df = pd.read_csv(csv_content) if 'Date' in df.columns: df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime df.set_index('Date', inplace=True) # Set 'Date' column as the index #df.to_csv(file_name) return df else: print(f"Failed to download {file_name}. Status code: {response.status_code}") return None @st.cache_data(show_spinner=False) def load_forecast(github_token, hour, after_10_min): predictions_dict = {} for hour in range(24): file_name = f'Predictions_{hour}h.csv' df = load_GitHub(github_token, file_name, hour, after_10_min) if df is not None: predictions_dict[file_name] = df return predictions_dict def convert_European_time(data, time_zone): data.index = pd.to_datetime(data.index, utc=True) data.index = data.index.tz_convert(time_zone) data.index = data.index.tz_localize(None) return data def simplify_model_names(df): # Define the mapping of complex names to simpler ones replacements = { r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', r'\.Naive\.\dD': '.Naive', } # Apply the replacements for original, simplified in replacements.items(): df.columns = df.columns.str.replace(original, simplified, regex=True) return df def simplify_model_names_in_index(df): # Define the mapping of complex names to simpler ones replacements = { r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', r'\.Naive\.\dD': '.Naive', } # Apply the replacements to the DataFrame index for original, simplified in replacements.items(): df.index = df.index.str.replace(original, simplified, regex=True) return df current_hour, after_10_min = get_current_time() github_token = st.secrets["GitHub_Token_KUL_Margarida"] if github_token: forecast_dict = load_forecast(github_token, current_hour, after_10_min) historical_forecast = load_GitHub(github_token, 'Historical_forecast.csv', current_hour, after_10_min) Data_BE = load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv', current_hour, after_10_min) Data_FR = load_GitHub(github_token, 'FR_Entsoe_UTC.csv', current_hour, after_10_min) Data_NL = load_GitHub(github_token, 'NL_Entsoe_UTC.csv', current_hour, after_10_min) Data_DE = load_GitHub(github_token, 'DE_Entsoe_UTC.csv', current_hour, after_10_min) Data_BE=convert_European_time(Data_BE, 'Europe/Brussels') Data_FR=convert_European_time(Data_FR, 'Europe/Paris') Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam') Data_DE=convert_European_time(Data_DE, 'Europe/Berlin') else: print("Please enter your GitHub Personal Access Token to proceed.") def conformal_predictions(data, target, my_forecast): data['Residuals'] = data[my_forecast] - data[actual_col] data['Hour'] = data.index.hour min_date = data.index.min() for date in data.index.normalize().unique(): if date >= min_date + pd.DateOffset(days=30): start_date = date - pd.DateOffset(days=30) end_date = date calculation_window = data[start_date:end_date-pd.DateOffset(hours=1)] quantiles = calculation_window.groupby('Hour')['Residuals'].quantile(0.8) # Use .loc to safely access and modify data if date in data.index: current_day_data = data.loc[date.strftime('%Y-%m-%d')] for hour in current_day_data['Hour'].unique(): if hour in quantiles.index: hour_quantile = quantiles[hour] idx = (data.index.normalize() == date) & (data.Hour == hour) data.loc[idx, 'Quantile_80'] = hour_quantile data.loc[idx, 'Lower_Interval'] = data.loc[idx, my_forecast] - hour_quantile data.loc[idx, 'Upper_Interval'] = data.loc[idx, my_forecast] + hour_quantile #data.reset_index(inplace=True) return data # Main layout of the app col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs with col1: st.title("Transparency++") with col2: upper_space = col2.empty() upper_space = col2.empty() col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images with col2_1: st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed with col2_2: st.image("energyville_logo.png", width=100) upper_space.markdown(""" """, unsafe_allow_html=True) countries = { 'Netherlands': 'NL', 'Germany': 'DE', 'France': 'FR', 'Belgium': 'BE', } st.sidebar.header('Filters') st.sidebar.subheader("Select Country") st.sidebar.caption("Choose the country for which you want to display data or forecasts.") selected_country = st.sidebar.selectbox('Select Country', list(countries.keys())) st.sidebar.subheader("Select Date Range ") st.sidebar.caption("Define the time period over which the accuracy metrics will be calculated.") st.write() date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:", value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today')))) # Ensure the date range provides two dates if len(date_range) == 2: start_date = pd.Timestamp(date_range[0]) end_date = pd.Timestamp(date_range[1]) else: st.error("Please select a valid date range.") st.stop() st.sidebar.subheader("Section") st.sidebar.caption("Select the type of information you want to explore.") # Sidebar with radio buttons for different sections section = st.sidebar.radio('', ['Data', 'Forecasts', 'Insights'],index=1) country_code = countries[selected_country] if country_code == 'BE': data = Data_BE weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore'] data['Temperature'] = data['temperature_2m_8'] data['Wind Speed Offshore'] = data['wind_speed_100m_4'] data['Wind Speed Onshore'] = data['wind_speed_100m_8'] elif country_code == 'DE': data = Data_DE weather_columns = ['Temperature', 'Wind Speed'] data['Temperature'] = data['temperature_2m'] data['Wind Speed'] = data['wind_speed_100m'] elif country_code == 'NL': data = Data_NL weather_columns = ['Temperature', 'Wind Speed'] data['Temperature'] = data['temperature_2m'] data['Wind Speed'] = data['wind_speed_100m'] elif country_code == 'FR': data = Data_FR weather_columns = ['Temperature', 'Wind Speed'] data['Temperature'] = data['temperature_2m'] data['Wind Speed'] = data['wind_speed_100m'] def add_feature(df2, df_main): #df_main.index = pd.to_datetime(df_main.index) #df2.index = pd.to_datetime(df2.index) df_combined = df_main.combine_first(df2) last_date_df1 = df_main.index.max() first_date_df2 = df2.index.min() if first_date_df2 == last_date_df1 + pd.Timedelta(hours=1): df_combined = pd.concat([df_main, df2[df2.index > last_date_df1]], axis=0) #df_combined.reset_index(inplace=True) return df_combined #data.index = data.index.tz_localize('UTC') forecast_columns = [ 'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] if section == 'Data': st.header("Data") st.write(""" This section allows you to explore and upload your datasets. You can visualize raw data, clean it, and prepare it for analysis. """) st.header('Data Quality') st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.') data_quality=data.iloc[:-28] if country_code=='BE': data_quality=data.iloc[:-5*24] print(data_quality.tail(48)) # Report % of missing values missing_values = data_quality[forecast_columns].isna().mean() * 100 missing_values = missing_values.round(2) installed_capacities = { 'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134}, 'DE': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915}, 'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053}, 'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190}, } if country_code not in installed_capacities: st.error(f"Installed capacities not defined for country code '{country_code}'.") st.stop() # Report % of extreme, impossible values for the selected country capacities = installed_capacities[country_code] extreme_values = {} for col in forecast_columns: if 'Solar_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 elif 'Solar_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 elif 'Wind_onshore_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 elif 'Wind_onshore_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 elif 'Wind_offshore_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 elif 'Wind_offshore_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 elif 'Load_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 elif 'Load_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 extreme_values = pd.Series(extreme_values).round(2) # Combine all metrics into one DataFrame metrics_df = pd.DataFrame({ 'Missing Values (%)': missing_values, 'Extreme/Nonsensical Values (%)': extreme_values, }) st.markdown( """ """, unsafe_allow_html=True ) st.dataframe(metrics_df) st.write('Missing values (%): Percentage of missing values in the dataset', unsafe_allow_html=True) st.write('Extreme/Nonsensical values (%): Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True) # Section 2: Forecasts elif section == 'Forecasts': st.header('Forecast Quality') # Time series for last 1 week st.subheader('Time Series: Last 1 Week') last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))] st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform between the selected data range.') forecast_columns = [ 'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] num_per_var=2 if country_code=='BE': operation_forecast_load=forecast_dict['Predictions_10h.csv'].filter(like='Load_', axis=1) operation_forecast_res=forecast_dict['Predictions_17h.csv'].filter(regex='^(?!Load_)') operation_forecast_load.columns = [col.replace('_entsoe.', '_').replace('Naive.7D', 'WeeklyNaiveSeasonal') for col in operation_forecast_load.columns] operation_forecast_res.columns = [col.replace('_entsoe.', '_').replace('Naive.1D', 'DailyNaiveSeasonal') for col in operation_forecast_res.columns] Historical_and_Load=add_feature(operation_forecast_load, historical_forecast) Historical_and_operational=add_feature(operation_forecast_res, Historical_and_Load) best_forecast = Historical_and_operational.filter(like='Forecast_elia', axis=1) df_combined = Historical_and_operational.join(Data_BE, how='inner') last_week_best_forecast = best_forecast.loc[best_forecast.index >= (best_forecast.index[-24] - pd.Timedelta(days=7))] num_per_var=3 forecast_columns_line=['Load_entsoe','Load_forecast_entsoe', 'Load_LightGBMModel.7D.TimeCov.Temp.Forecast_elia', 'Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_onshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Wind_offshore_LightGBMModel.1D.TimeCov.Temp.Forecast_elia','Solar_entsoe','Solar_forecast_entsoe', 'Solar_LightGBMModel.1D.TimeCov.Temp.Forecast_elia'] else: forecast_columns_line=forecast_columns for i in range(0, len(forecast_columns_line), num_per_var): actual_col = forecast_columns_line[i] forecast_col = forecast_columns_line[i + 1] if country_code=='BE': my_forecast = forecast_columns_line[i + 2] if forecast_col in data.columns: fig = go.Figure() fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual')) fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E')) if country_code=='BE': conformal=conformal_predictions(df_combined, actual_col, my_forecast) last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=7))] if actual_col =='Load_entsoe': last_week_conformal = conformal.loc[conformal.index >= (conformal.index[-24] - pd.Timedelta(days=5))] fig.add_trace(go.Scatter(x=last_week_best_forecast.index, y=last_week_best_forecast[my_forecast], mode='lines', name='Forecast EDS')) fig.add_trace(go.Scatter( x=last_week_conformal.index, y=last_week_conformal['Lower_Interval'], mode='lines', line=dict(width=0), showlegend=False )) # Add the upper interval trace and fill to the lower interval fig.add_trace(go.Scatter( x=last_week_conformal.index, y=last_week_conformal['Upper_Interval'], mode='lines', line=dict(width=0), fill='tonexty', # Fill between this trace and the previous one fillcolor='rgba(68, 68, 68, 0.3)', name='P10/P90 prediction intervals' )) fig.update_layout(title=f'Forecasts vs Actual for {actual_col}', xaxis_title='Date', yaxis_title='Value [MW]') st.plotly_chart(fig) def plot_category(df_dict, category_prefix, title): fig = go.Figure() # Define base colors for each model model_colors = { 'LightGBMModel.TimeCov.Temp.Forecast_elia': '#1f77b4', # Blue 'LightGBMModel.TimeCov.Temp': '#2ca02c', # Green 'Naive': '#ff7f0e' # Orange } # To keep track of which model has been added to the legend legend_added = {'LightGBMModel.TimeCov.Temp.Forecast_elia': False, 'LightGBMModel.TimeCov.Temp': False, 'Naive': False} for file_name, df in df_dict.items(): # Extract the hour from the filename, assuming the format is "Predictions_Xh.csv" hour = int(file_name.split('_')[1].replace('h.csv', '')) filtered_columns = [col for col in df.columns if col.startswith(category_prefix)] for column in filtered_columns: # Identify the model type with more precise logic if 'LightGBMModel' in column: if 'Forecast_elia' in column: model_key = 'LightGBMModel.TimeCov.Temp.Forecast_elia' elif 'TimeCov' in column: model_key = 'LightGBMModel.TimeCov.Temp' elif 'Naive' in column: model_key = 'Naive' else: continue # Skip if it doesn't match any model type # Extract the relevant part of the model name parts = column.split('.') model_name_parts = parts[1:] # Skip the variable prefix model_name = '.'.join(model_name_parts) # Rejoin the parts to form the model name # Get the base color for the model base_color = model_colors[model_key] # Calculate the color shade based on the hour color_scale = pc.hex_to_rgb(base_color) scale_factor = 0.3 + (hour / 40) # Adjust scale to ensure the gradient is visible adjusted_color = tuple(int(c * scale_factor) for c in color_scale) # Convert to RGBA with transparency for plot lines line_color = f'rgba({adjusted_color[0]}, {adjusted_color[1]}, {adjusted_color[2]}, 0.1)' # Transparent color for lines # Combine the hour and the model name for the legend, but only add the legend entry once show_legend = not legend_added[model_key] fig.add_trace(go.Scatter( x=df.index, # Assuming 'Date' is the index, use 'df.index' for x-axis y=df[column], mode='lines', name=model_name if show_legend else None, # Use the model name for the legend, but only once line=dict(color=base_color if show_legend else line_color), # Use opaque color for legend, transparent for lines showlegend=show_legend, # Show legend only once per model legendgroup=model_key # Grouping for consistent legend color )) # Mark that this model has been added to the legend if show_legend: legend_added[model_key] = True # Add real values as a separate trace, if provided filtered_Data_BE_df = Data_BE.loc[df.index] if filtered_Data_BE_df[f'{category_prefix}_entsoe'].notna().any(): fig.add_trace(go.Scatter( x=filtered_Data_BE_df.index, y=filtered_Data_BE_df[f'{category_prefix}_entsoe'], mode='lines', name=f'Actual {category_prefix}', line=dict(color='black', width=2), # Black line for real values showlegend=True # Always show this in the legend )) # Update layout to position the legend at the top, side by side fig.update_layout( title=dict( text=title, x=0, # Center the title horizontally y=1.00, # Slightly lower the title to create more space xanchor='left', yanchor='top' ), xaxis_title='Date', yaxis_title='Value', legend=dict( orientation="h", # Horizontal legend yanchor="bottom", # Align to the bottom of the legend box y=1, # Increase y position to avoid overlap with the title xanchor="center", # Center the legend horizontally x=0.5 # Position at the center of the plot ) ) return fig def calculate_mae(y_true, y_pred): return np.mean(np.abs(y_true - y_pred)) def plot_mae_comparison(df_dict, category_prefix, title, real_values_df): hours = list(range(24)) if category_prefix=='Load': model_colors = { 'LightGBMModel.7D.TimeCov.Temp.Forecast_elia': '#1F77B4', # Blue 'LightGBMModel.7D.TimeCov.Temp': '#2CA02C', # Green 'Naive': '#FF7F0E' # Orange } else: model_colors = { 'LightGBMModel.1D.TimeCov.Temp.Forecast_elia': '#1F77B4', # Blue 'LightGBMModel.1D.TimeCov.Temp': '#2CA02C', # Green 'Naive': '#FF7F0E' # Orange } fig = go.Figure() for model_key, base_color in model_colors.items(): hours_with_data = [] mae_ratios = [] for hour in hours: file_name = f'Predictions_{hour}h.csv' df = df_dict.get(file_name, None) if df is None: continue if isinstance(df.index, pd.DatetimeIndex): first_day = df.index.min().normalize() last_day = df.index.max().normalize() df = df[df.index.normalize() != first_day] df = df[df.index.normalize() != last_day] # Adjusted filtering logic based on actual column names filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col] if not filtered_columns: continue # Assuming only one column matches, otherwise refine the selection logic model_predictions = df[filtered_columns[0]] actual_values = real_values_df[f'{category_prefix}_entsoe'] actual_values = actual_values.dropna() # Align both series by their common indices common_indices = model_predictions.index.intersection(actual_values.index) aligned_model_predictions = model_predictions.loc[common_indices] aligned_actual_values = actual_values.loc[common_indices] # Calculate MAE for the model model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions) # Calculate MAE for the entsoe forecast entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices] entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast) # Calculate MAE ratio mae_ratio = model_mae / entsoe_mae mae_ratios.append(mae_ratio) hours_with_data.append(hour) # Plot the MAE ratio for this model as points if mae_ratios: # Only plot if there's data fig.add_trace(go.Scatter( x=hours_with_data, # The hours where we have data y=mae_ratios, mode='markers+lines', # Plot as points connected by lines name=model_key, line=dict(color=base_color), marker=dict(color=base_color, size=8) # Customize marker size )) # Update layout fig.update_layout( title=f'{category_prefix}: rMAEENTSO-E by hour of Forecasting.', xaxis_title='Hour of Forecast', yaxis_title='MAE Ratio (Model / entsoe)', legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5 ) ) return fig def plot_mae_comparison_clock(df_dict, category_prefix, title, real_values_df): hours = list(range(24)) if category_prefix=='Load': model_colors = { 'LightGBM_with_Forecast_elia': '#1F77B4', # Blue 'LightGBM': '#2CA02C', # Green 'Naive': '#FF7F0E' # Orange } else: model_colors = { 'LightGBM_with_Forecast_elia': '#1F77B4', # Blue 'LightGBM': '#2CA02C', # Green 'Naive': '#FF7F0E' # Orange } fig = go.Figure() for model_key, base_color in model_colors.items(): hours_with_data = [] mae_ratios = [] for hour in hours: file_name = f'Predictions_{hour}h.csv' df = df_dict.get(file_name, None) if df is None: continue if isinstance(df.index, pd.DatetimeIndex): first_day = df.index.min().normalize() last_day = df.index.max().normalize() df = df[df.index.normalize() != first_day] df = df[df.index.normalize() != last_day] filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col] if not filtered_columns: print(f"No matching columns for {model_key} at hour {hour}. Skipping...") continue model_predictions = df[filtered_columns[0]] actual_values = real_values_df[f'{category_prefix}_entsoe'] actual_values = actual_values.dropna() common_indices = model_predictions.index.intersection(actual_values.index) aligned_model_predictions = model_predictions.loc[common_indices] aligned_actual_values = actual_values.loc[common_indices] model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions) entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices] entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast) mae_ratio = model_mae / entsoe_mae mae_ratios.append(mae_ratio) hours_with_data.append(hour) if mae_ratios: fig.add_trace(go.Scatterpolar( r=mae_ratios + [mae_ratios[0]], # Ensure closure of the polar plot theta=[h * 15 for h in hours_with_data] + [0], # Ensure closure at 0 degrees mode='lines+markers', name=model_key, line=dict(color=base_color), marker=dict(color=base_color, size=8) )) else: print(f"No data to plot for {model_key}.") # Debugging print fig.update_layout( polar=dict( radialaxis=dict(visible=True, range=[0, max(max(mae_ratios), 1.0) * 1.1] if mae_ratios else [0, 1.0]), angularaxis=dict(tickmode='array', tickvals=[h * 15 for h in hours], ticktext=hours) ), title=f'{category_prefix}: rMAEENTSO-E by Hour of Forecasting', showlegend=True ) return fig if country_code == "BE": st.header('MAE Ratio Comparison by Forecast Hour') st.write("These clock-plots shows the relative Mean Absolute Error (rMAE) of different forecasting models compared to the ENTSO-E forecast, by the hour at which the forecast was made. " "The rMAE is calculated as the ratio of the model's MAE to the ENTSO-E forecast's MAE.") forecast_dict2 = forecast_dict.copy() forecast_dict2 = {k: simplify_model_names(v) for k, v in forecast_dict.items()} mae_comparison_fig = plot_mae_comparison_clock(forecast_dict2, 'Solar', 'rMAE Ratio Comparison for Solar', real_values_df=Data_BE) st.plotly_chart(mae_comparison_fig) mae_comparison_fig_wind_onshore = plot_mae_comparison_clock(forecast_dict2, 'Wind_onshore', 'MAE Ratio Comparison for Wind Onshore', real_values_df=Data_BE) st.plotly_chart(mae_comparison_fig_wind_onshore) mae_comparison_fig_wind_offshore = plot_mae_comparison_clock(forecast_dict2, 'Wind_offshore', 'MAE Ratio Comparison for Wind Offshore', real_values_df=Data_BE) st.plotly_chart(mae_comparison_fig_wind_offshore) mae_comparison_fig_load = plot_mae_comparison_clock(forecast_dict2, 'Load', 'MAE Ratio Comparison for Load', real_values_df=Data_BE) st.plotly_chart(mae_comparison_fig_load) # Scatter plots for error distribution st.subheader('Error Distribution') st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range') data_2024 = data[data.index.year > 2023] for i in range(0, len(forecast_columns), 2): actual_col = forecast_columns[i] forecast_col = forecast_columns[i + 1] if forecast_col in data_2024.columns: obs = data_2024[actual_col] pred = data_2024[forecast_col] error = pred - obs fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'}) fig.update_layout(title=f'Error Distribution for {forecast_col}') st.plotly_chart(fig) st.subheader('Accuracy Metrics (Sorted by rMAE):') output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar." st.write(output_text) if country_code == "BE": # Combine the two DataFrames on their index df_combined = Historical_and_operational.join(Data_BE, how='inner') # List of model columns from historical_forecast model_columns = historical_forecast.columns # Initialize dictionaries to store MAE and RMSE results for each variable results_wind_onshore = {} results_wind_offshore = {} results_load = {} results_solar = {} # Mapping of variables to their corresponding naive models naive_models = { 'Wind_onshore': 'Wind_onshore_DailyNaiveSeasonal', 'Wind_offshore': 'Wind_offshore_DailyNaiveSeasonal', 'Load': 'Load_WeeklyNaiveSeasonal', 'Solar': 'Solar_DailyNaiveSeasonal' } # Step 1: Calculate MAE, RMSE, and rMAE for each model for col in model_columns: # Extract the variable name by taking everything before the first underscore base_variable = col.split('_')[0] # Handle cases where variable names might be combined with multiple parts (e.g., "Load_LightGBMModel...") if base_variable in ['Wind', 'Load', 'Solar']: if 'onshore' in col: variable_name = 'Wind_onshore' results_dict = results_wind_onshore elif 'offshore' in col: variable_name = 'Wind_offshore' results_dict = results_wind_offshore else: variable_name = base_variable results_dict = results_load if base_variable == 'Load' else results_solar else: variable_name = base_variable # Construct the corresponding `variable_entsoe` column name entsoe_column = f'{variable_name}_entsoe' naive_model_col = naive_models.get(variable_name, None) # Drop NaNs for the specific pair of columns before calculating MAE and RMSE if entsoe_column in df_combined.columns and naive_model_col in df_combined.columns: valid_data = df_combined[[col, entsoe_column]].dropna() valid_naive_data = df_combined[[entsoe_column, naive_model_col]].dropna() # Calculate MAE and RMSE for the model against the `variable_entsoe` mae = np.mean(abs(valid_data[col] - valid_data[entsoe_column])) rmse = np.sqrt(mean_squared_error(valid_data[col], valid_data[entsoe_column])) # Calculate MAE for the Naive model mae_naive = np.mean(abs(valid_naive_data[entsoe_column] - valid_naive_data[naive_model_col])) # Calculate rMAE for the model rMAE = mae / mae_naive if mae_naive != 0 else np.inf # Store the results in the corresponding dictionary results_dict[f'{col}'] = {'MAE': mae, 'RMSE': rmse, 'rMAE': rMAE} # Step 2: Calculate MAE, RMSE, and rMAE for ENTSO-E forecasts specifically for variable_name in naive_models.keys(): entsoe_column = f'{variable_name}_entsoe' forecast_entsoe_column = f'{variable_name}_forecast_entsoe' naive_model_col = naive_models[variable_name] # Ensure that the ENTSO-E forecast is included in the results if forecast_entsoe_column in df_combined.columns: valid_data = df_combined[[forecast_entsoe_column, entsoe_column]].dropna() valid_naive_data = df_combined[[entsoe_column, naive_model_col]].dropna() # Calculate MAE and RMSE for the ENTSO-E forecast against the actuals mae_entsoe = np.mean(abs(valid_data[forecast_entsoe_column] - valid_data[entsoe_column])) rmse_entsoe = np.sqrt(mean_squared_error(valid_data[forecast_entsoe_column], valid_data[entsoe_column])) # Calculate rMAE for the ENTSO-E forecast mae_naive = np.mean(abs(valid_naive_data[entsoe_column] - valid_naive_data[naive_model_col])) rMAE_entsoe = mae_entsoe / mae_naive if mae_naive != 0 else np.inf # Add the ENTSO-E results to the corresponding dictionary if variable_name == 'Wind_onshore': results_wind_onshore[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe} elif variable_name == 'Wind_offshore': results_wind_offshore[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe} elif variable_name == 'Load': results_load[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe} elif variable_name == 'Solar': results_solar[forecast_entsoe_column] = {'MAE': mae_entsoe, 'RMSE': rmse_entsoe, 'rMAE': rMAE_entsoe} # Convert the dictionaries to DataFrames and sort by rMAE df_wind_onshore = pd.DataFrame.from_dict(results_wind_onshore, orient='index').sort_values(by='rMAE') df_wind_offshore = pd.DataFrame.from_dict(results_wind_offshore, orient='index').sort_values(by='rMAE') df_load = pd.DataFrame.from_dict(results_load, orient='index').sort_values(by='rMAE') df_solar = pd.DataFrame.from_dict(results_solar, orient='index').sort_values(by='rMAE') st.write("##### Wind Onshore:") df_wind_onshore = simplify_model_names_in_index(df_wind_onshore) st.dataframe(df_wind_onshore) st.write("##### Wind Offshore:") df_wind_offshore2 = simplify_model_names_in_index(df_wind_offshore) st.dataframe(df_wind_offshore) st.write("##### Load:") df_load = simplify_model_names_in_index(df_load) st.dataframe(df_load) st.write("##### Solar:") df_solar = simplify_model_names_in_index(df_solar) st.dataframe(df_solar) else: data = data.loc[start_date:end_date] accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore']) for i in range(0, len(forecast_columns), 2): actual_col = forecast_columns[i] forecast_col = forecast_columns[i + 1] if forecast_col in data.columns: obs = data[actual_col] pred = data[forecast_col] error = pred - obs mae = round(np.mean(np.abs(error)),2) if 'Load' in actual_col: persistence = obs.shift(168) # Weekly persistence else: persistence = obs.shift(24) # Daily persistence # Using the whole year's data for rMAE calculations rmae = round(mae / np.mean(np.abs(obs - persistence)),2) row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore' accuracy_metrics.loc[row_label] = [mae, rmae] accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column) accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True) accuracy_metrics = accuracy_metrics.round(4) col1, col2 = st.columns([3, 2]) with col1: st.dataframe(accuracy_metrics) with col2: st.markdown("""