import requests import pandas as pd from io import StringIO import streamlit as st import os import plotly.express as px import plotly.graph_objects as go import plotly.colors as pc import numpy as np from sklearn.metrics import mean_squared_error from statsmodels.tsa.stattools import acf from statsmodels.graphics.tsaplots import plot_acf import matplotlib.pyplot as plt from datetime import datetime import folium import seaborn as sns from streamlit_folium import st_folium from datetime import datetime, timedelta from entsoe.geo import load_zones from branca.colormap import LinearColormap import branca def get_current_time(): now = datetime.now() current_hour = now.hour current_minute = now.minute # Return the hour and a boolean indicating if it is after the 10th minute return current_hour, current_minute >= 10 ##GET ALL FILES FROM GITHUB @st.cache_data(show_spinner=False) def load_GitHub(github_token, file_name, hour, after_10_min): url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}' headers = {'Authorization': f'token {github_token}'} response = requests.get(url, headers=headers) if response.status_code == 200: csv_content = StringIO(response.text) df = pd.read_csv(csv_content) if 'Date' in df.columns: df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime df.set_index('Date', inplace=True) # Set 'Date' column as the index #df.to_csv(file_name) return df else: print(f"Failed to download {file_name}. Status code: {response.status_code}") return None @st.cache_data(show_spinner=False) def load_forecast(github_token, hour, after_10_min): predictions_dict = {} for hour in range(24): file_name = f'Predictions_{hour}h.csv' df = load_GitHub(github_token, file_name, hour, after_10_min) if df is not None: predictions_dict[file_name] = df return predictions_dict def convert_European_time(data, time_zone): data.index = pd.to_datetime(data.index, utc=True) data.index = data.index.tz_convert(time_zone) data.index = data.index.tz_localize(None) return data def simplify_model_names(df): # Define the mapping of complex names to simpler ones replacements = { r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', r'\.Naive\.\dD': '.Naive', } # Apply the replacements for original, simplified in replacements.items(): df.columns = df.columns.str.replace(original, simplified, regex=True) return df def simplify_model_names_in_index(df): # Define the mapping of complex names to simpler ones replacements = { r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', r'\.Naive\.\dD': '.Naive', } # Apply the replacements to the DataFrame index for original, simplified in replacements.items(): df.index = df.index.str.replace(original, simplified, regex=True) return df github_token = st.secrets["GitHub_Token_KUL_Margarida"] if github_token: hour, after_10_min=get_current_time() forecast_dict = load_forecast(github_token, hour, after_10_min) historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv', hour, after_10_min) Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv', hour, after_10_min) Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv', hour, after_10_min) Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv', hour, after_10_min) Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv', hour, after_10_min) Data_PT=load_GitHub(github_token, 'PT_Entsoe_UTC.csv', hour, after_10_min) Data_ES=load_GitHub(github_token, 'ES_Entsoe_UTC.csv', hour, after_10_min) Data_AT=load_GitHub(github_token, 'AT_Entsoe_UTC.csv', hour, after_10_min) Data_IT_CALA=load_GitHub(github_token, 'IT_CALA_Entsoe_UTC.csv', hour, after_10_min) Data_IT_CNOR=load_GitHub(github_token, 'IT_CNOR_Entsoe_UTC.csv', hour, after_10_min) Data_IT_CSUD=load_GitHub(github_token, 'IT_CSUD_Entsoe_UTC.csv', hour, after_10_min) Data_IT_NORD=load_GitHub(github_token, 'IT_NORD_Entsoe_UTC.csv', hour, after_10_min) Data_IT_SICI=load_GitHub(github_token, 'IT_SICI_Entsoe_UTC.csv', hour, after_10_min) Data_IT_SUD=load_GitHub(github_token, 'IT_SUD_Entsoe_UTC.csv', hour, after_10_min) Data_DK_1=load_GitHub(github_token, 'DK_1_Entsoe_UTC.csv', hour, after_10_min) Data_DK_2=load_GitHub(github_token, 'DK_2_Entsoe_UTC.csv', hour, after_10_min) Data_BE=convert_European_time(Data_BE, 'Europe/Brussels') Data_FR=convert_European_time(Data_FR, 'Europe/Paris') Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam') Data_DE=convert_European_time(Data_DE, 'Europe/Berlin') Data_PT=convert_European_time(Data_PT, 'Europe/Lisbon') Data_ES=convert_European_time(Data_ES, 'Europe/Madrid') Data_AT=convert_European_time(Data_AT, 'Europe/Vienna') Data_IT_CALA = convert_European_time(Data_IT_CALA, 'Europe/Rome') Data_IT_CNOR = convert_European_time(Data_IT_CNOR, 'Europe/Rome') Data_IT_CSUD = convert_European_time(Data_IT_CSUD, 'Europe/Rome') Data_IT_NORD = convert_European_time(Data_IT_NORD, 'Europe/Rome') Data_IT_SICI = convert_European_time(Data_IT_SICI, 'Europe/Rome') Data_IT_SUD = convert_European_time(Data_IT_SUD, 'Europe/Rome') Data_DK_1 = convert_European_time(Data_DK_1, 'Europe/Copenhagen') Data_DK_2 = convert_European_time(Data_DK_2, 'Europe/Copenhagen') else: print("Please enter your GitHub Personal Access Token to proceed.") col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs with col1: st.title("Transparency++") with col2: upper_space = col2.empty() upper_space = col2.empty() col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images with col2_1: st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed with col2_2: st.image("energyville_logo.png", width=100) st.write("**Evaluate and analyze ENTSO-E Transparency Platform data quality, forecast accuracy, and energy trends for Portugal, Spain, Belgium, France, Germany-Luxembourg, Austria, the Netherlands, Italy and Denmark.**") upper_space.markdown("""     """, unsafe_allow_html=True) countries = { 'Overall': 'Overall', 'Austria': 'AT', 'Belgium': 'BE', 'Denmark 1': 'DK_1', 'Denmark 2': 'DK_2', 'France': 'FR', 'Germany-Luxembourg': 'DE_LU', 'Italy Calabria': 'IT_CALA', 'Italy Central North': 'IT_CNOR', 'Italy Central South': 'IT_CSUD', 'Italy North': 'IT_NORD', 'Italy Sicily': 'IT_SICI', 'Italy South': 'IT_SUD', 'Netherlands': 'NL', 'Portugal': 'PT', 'Spain': 'ES', } data_dict = { 'BE': Data_BE, 'FR': Data_FR, 'DE_LU': Data_DE, 'NL': Data_NL, 'PT': Data_PT, 'AT': Data_AT, 'ES': Data_ES, 'IT_CALA': Data_IT_CALA, 'IT_CNOR': Data_IT_CNOR, 'IT_CSUD': Data_IT_CSUD, 'IT_NORD': Data_IT_NORD, 'IT_SICI': Data_IT_SICI, 'IT_SUD': Data_IT_SUD, 'DK_1': Data_DK_1, 'DK_2': Data_DK_2, } countries_all_RES = ['BE', 'FR', 'NL', 'DE_LU', 'PT', 'DK_1', 'DK_2'] countries_no_offshore= ['AT', 'ES', 'IT_CALA', 'IT_CNOR', 'IT_CSUD', 'IT_NORD', 'IT_SICI', 'IT_SUD',] installed_capacities = { 'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134}, 'DE_LU': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915}, 'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053}, 'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190}, 'PT': { 'Solar': 1811, 'Wind Offshore': 25, 'Wind Onshore': 5333}, 'ES': { 'Solar': 23867, 'Wind Onshore': 30159}, 'AT': { 'Solar': 7294, 'Wind Onshore': 4021 }, 'DK_1': { 'Solar': 2738, 'Wind Offshore': 1601, 'Wind Onshore': 4112}, 'DK_2': { 'Solar': 992, 'Wind Offshore': 1045, 'Wind Onshore': 748}, } forecast_columns_all_RES = [ 'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] forecast_columns_no_wind_offshore = [ 'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] st.sidebar.header('Filters') st.sidebar.subheader("Select Country") st.sidebar.caption("Choose the country for which you want to display data or forecasts.") selected_country = st.sidebar.selectbox('Select Country', list(countries.keys())) # Sidebar with radio buttons for different sections if selected_country != 'Overall': st.sidebar.subheader("Section") st.sidebar.caption("Select the type of information you want to explore.") section = st.sidebar.radio('', ['Data Quality', 'Forecasts Quality', 'Insights'], index=1) else: section = None # No section is shown when "Overall" is selected if selected_country == 'Overall': data = None # You can set data to None or a specific dataset based on your logic section = None # No section selected when "Overall" is chosen else: country_code = countries[selected_country] data = data_dict.get(country_code) if country_code in countries_all_RES: forecast_columns = forecast_columns_all_RES elif country_code in countries_no_offshore: forecast_columns = forecast_columns_no_wind_offshore if country_code == 'BE': weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore'] data['Temperature'] = data['temperature_2m_8'] data['Wind Speed Onshore'] = data['wind_speed_100m_8'] data['Wind Speed Offshore'] = data['wind_speed_100m_4'] else: weather_columns = ['Temperature', 'Wind Speed'] data['Temperature'] = data['temperature_2m'] data['Wind Speed'] = data['wind_speed_100m'] if section == 'Data Quality': st.header('Data Quality') st.write('The table below presents the data quality metrics focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.') yesterday_midnight = pd.Timestamp(datetime.datetime.now().date() - pd.Timedelta(days=1)).replace(hour=23, minute=59, second=59) # Filter data until the end of yesterday (midnight) data_quality = data[data.index <= yesterday_midnight] # Report % of missing values missing_values = data_quality[forecast_columns].isna().mean() * 100 missing_values = missing_values.round(2) if country_code not in installed_capacities: st.markdown(f"⚠️ **Installed capacities not available on ENTSO-E Transparency Platform for country code '{country_code}'. Therefore, cannot calculate Extreme/Nonsensical values.**") # If capacities are not available, assign NaN to extreme_values and skip extreme value checking extreme_values = {col: np.nan for col in forecast_columns} else: capacities = installed_capacities[country_code] extreme_values = {} for col in forecast_columns: if 'Solar_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 elif 'Solar_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 elif 'Wind_onshore_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 elif 'Wind_onshore_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 elif 'Wind_offshore_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 elif 'Wind_offshore_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 elif 'Load_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 elif 'Load_forecast_entsoe' in col: extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 extreme_values = pd.Series(extreme_values).round(2) # Combine all metrics into one DataFrame metrics_df = pd.DataFrame({ 'Missing Values (%)': missing_values, 'Extreme/Nonsensical Values (%)': extreme_values, }) st.markdown( """ """, unsafe_allow_html=True ) st.dataframe(metrics_df) st.write('Missing values (%): Percentage of missing values in the dataset', unsafe_allow_html=True) st.write('Extreme/Nonsensical values (%): Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True) elif section == 'Forecasts Quality': st.header('Forecast Quality') # Time series for last 1 week last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))] st.write('The below plot shows the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform from the past week.') # Options for selecting the data to display if country_code in countries_all_RES: variable_options = { "Load": ("Load_entsoe", "Load_forecast_entsoe"), "Solar": ("Solar_entsoe", "Solar_forecast_entsoe"), "Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"), "Wind Offshore": ("Wind_offshore_entsoe", "Wind_offshore_forecast_entsoe") } elif country_code in countries_no_offshore: variable_options = { "Load": ("Load_entsoe", "Load_forecast_entsoe"), "Solar": ("Solar_entsoe", "Solar_forecast_entsoe"), "Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"), } else: print('Country code doesnt correspond.') # Dropdown to select the variable selected_variable = st.selectbox("Select Variable for Line PLot", list(variable_options.keys())) # Get the corresponding columns for the selected variable actual_col, forecast_col = variable_options[selected_variable] # Plot only the selected variable's data fig = go.Figure() fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual')) fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E')) fig.update_layout(title=f'Forecasts vs Actual for {selected_variable}', xaxis_title='Date', yaxis_title='Value [MW]') st.plotly_chart(fig) # Scatter plots for error distribution st.subheader('Error Distribution') st.write('The below scatter plots show the error distribution of all fields: Solar, Wind and Load.') selected_variable = st.selectbox("Select Variable for Error Distribution", list(variable_options.keys())) # Get the corresponding columns for the selected variable actual_col, forecast_col = variable_options[selected_variable] # Filter data for the selected year and check if columns are available data_2024 = data[data.index.year > 2023] if forecast_col in data_2024.columns: obs = data_2024[actual_col] pred = data_2024[forecast_col] # Calculate error and plot error = pred - obs fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Forecast ENTSO-E [MW]'}) fig.update_layout(title=f'Error Distribution for {selected_variable}') st.plotly_chart(fig) st.subheader('Accuracy Metrics (Sorted by rMAE):') date_range = st.date_input( "Select Date Range for Metrics Calculation:", value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))) ) if len(date_range) == 2: start_date = pd.Timestamp(date_range[0]) end_date = pd.Timestamp(date_range[1]) else: st.error("Please select a valid date range.") st.stop() output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. " st.write(output_text) data = data.loc[start_date:end_date] if country_code in countries_all_RES: accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore']) elif country_code in countries_no_offshore: accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore']) else: print('Country code doesnt correspond.') for i in range(0, len(forecast_columns), 2): actual_col = forecast_columns[i] forecast_col = forecast_columns[i + 1] if forecast_col in data.columns: obs = data[actual_col] pred = data[forecast_col] error = pred - obs mae = round(np.mean(np.abs(error)),2) if 'Load' in actual_col: persistence = obs.shift(168) # Weekly persistence else: persistence = obs.shift(24) # Daily persistence # Using the whole year's data for rMAE calculations rmae = round(mae / np.mean(np.abs(obs - persistence)),2) row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore' accuracy_metrics.loc[row_label] = [mae, rmae] accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column) accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True) accuracy_metrics = accuracy_metrics.round(4) col1, col2 = st.columns([1, 2]) with col1: st.markdown( """ """, unsafe_allow_html=True ) st.dataframe(accuracy_metrics) st.markdown( """ """, unsafe_allow_html=True ) with col2: # Prepare data for the radar chart rmae_values = accuracy_metrics['rMAE'].tolist() categories = accuracy_metrics.index.tolist() fig = go.Figure() fig.add_trace(go.Scatterpolar( r=rmae_values, theta=categories, fill='toself', name='rMAE' )) # Configuring radar chart layout to be smaller fig.update_layout( width=250, # Adjust width height=250, # Adjust height margin=dict(t=20, b=20, l=0, r=0), # Remove all margins polar=dict( radialaxis=dict( visible=True, range=[0, max(rmae_values) * 1.2] # Adjust range dynamically )), showlegend=False ) # Apply CSS class to remove extra space above chart st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, className="small-chart") st.subheader('ACF plots of Errors') st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.') # Dropdown to select the variable selected_variable = st.selectbox("Select Variable for ACF of Errors", list(variable_options.keys())) # Get the corresponding columns for the selected variable actual_col, forecast_col = variable_options[selected_variable] # Calculate the error and plot ACF if columns are available if forecast_col in data.columns: obs = data[actual_col] pred = data[forecast_col] error = pred - obs st.write(f"**ACF of Errors for {selected_variable}**") fig, ax = plt.subplots(figsize=(10, 5)) plot_acf(error.dropna(), ax=ax) st.pyplot(fig) # Optionally calculate and store ACF values for further analysis if needed acf_values = acf(error.dropna(), nlags=240) elif section == 'Insights': st.header("Insights") st.write('The scatter plots below are created to explore possible correlations between the data fields: Solar, Wind Onshore, Wind Offshore (if any), Load, and Weather Features.') # Add a selection box for the data resolution (weekly, daily, hourly) data_2024 = data[data.index.year == 2024] resolution = st.selectbox('Select data resolution:', ['Daily', 'Hourly']) # Resample data based on the selected resolution if resolution == 'Hourly': resampled_data = data_2024 elif resolution == 'Daily': resampled_data = data_2024.resample('D').mean() # Resample to daily mean # Select the necessary columns for the scatter plot if country_code in countries_all_RES: selected_columns = ['Load_entsoe', 'Solar_entsoe', 'Wind_offshore_entsoe', 'Wind_onshore_entsoe'] + weather_columns elif country_code in countries_no_offshore: selected_columns = ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe'] + weather_columns else: print('Country code doesnt correspond.') selected_df = resampled_data[selected_columns] selected_df.columns = [col.replace('_entsoe', '').replace('_', ' ') for col in selected_df.columns] # Drop missing values selected_df = selected_df.dropna() # Create the scatter plots using seaborn's pairplot sns.set_theme(style="ticks") pairplot_fig = sns.pairplot(selected_df) # Display the pairplot in Streamlit st.pyplot(pairplot_fig) elif selected_country == 'Overall': def get_forecast_columns(country_code): if country_code in countries_all_RES: return forecast_columns_all_RES elif country_code in countries_no_offshore: return forecast_columns_no_wind_offshore else: print('Country code doesnt correspond.') def calculate_net_load_error(df, country_code): forecast_columns = get_forecast_columns(country_code) filter_df = df[forecast_columns].dropna() # Initialize net_load and net_load_forecast with Load and other available data net_load = filter_df['Load_entsoe'] - filter_df['Wind_onshore_entsoe'] - filter_df['Solar_entsoe'] net_load_forecast = filter_df['Load_forecast_entsoe'] - filter_df['Wind_onshore_forecast_entsoe'] - filter_df['Solar_forecast_entsoe'] # Subtract Wind_offshore_entsoe if the column exists if 'Wind_offshore_entsoe' in filter_df.columns: net_load -= filter_df['Wind_offshore_entsoe'] # Subtract Wind_offshore_forecast_entsoe if the column exists if 'Wind_offshore_forecast_entsoe' in filter_df.columns: net_load_forecast -= filter_df['Wind_offshore_forecast_entsoe'] # Calculate the error based on the latest values error = (net_load_forecast - net_load).iloc[-1] date = filter_df.index[-1].strftime("%Y-%m-%d %H:%M") # Get the latest date in string format return error, date def plot_net_load_error_map(data_dict): # Calculate net load errors and dates for each country net_load_errors = {country_code: calculate_net_load_error(data, country_code) for country_code, data in data_dict.items()} # Use country codes directly selected_country_codes = list(data_dict.keys()) df_net_load_error = pd.DataFrame({ 'zoneName': selected_country_codes, 'net_load_error': [v[0] for v in net_load_errors.values()], 'date': [v[1] for v in net_load_errors.values()] }) # Load the GeoJSON data using the entsoe library date = pd.Timestamp.now() geo_data = load_zones(selected_country_codes, date) # Reset index to include 'zoneName' as a column geo_data = geo_data.reset_index() # Map country codes to country names countries_code_to_name = {v: k for k, v in countries.items()} geo_data['name'] = geo_data['zoneName'].map(countries_code_to_name) # Merge net_load_error and date into geo_data geo_data = geo_data.merge(df_net_load_error, on='zoneName', how='left') # Initialize the Folium map m = folium.Map(location=[46.6034, 1.8883], zoom_start=4, tiles="cartodb positron") # Calculate the maximum absolute net load error for normalization max_value = df_net_load_error['net_load_error'].abs().max() # Create a colormap with lighter shades colormap = branca.colormap.LinearColormap( colors=['#0D92F4', 'white', '#C62E2E'], # Light blue to white to light coral vmin=-max_value, vmax=max_value, caption='Net Load Error [MW]' ) # Define the style function def style_function(feature): net_load_error = feature['properties']['net_load_error'] if net_load_error is None: return {'fillOpacity': 0.5, 'color': 'grey', 'weight': 0.5} else: fill_color = colormap(net_load_error) return { 'fillColor': fill_color, 'fillOpacity': 0.8, # Set a constant opacity 'color': 'black', 'weight': 0.5 } # Add the GeoJson layer with the custom style_function folium.GeoJson( geo_data, style_function=style_function, tooltip=folium.GeoJsonTooltip( fields=["name", "net_load_error", "date"], aliases=["Country:", "Net Load Error [MW]:", "Date:"], localize=True ) ).add_to(m) # Add the colormap to the map colormap.add_to(m) # Display the map st_folium(m, width=700, height=600) def calculate_mae(actual, forecast): return np.mean(np.abs(actual - forecast)) def calculate_persistence_mae(data, shift_hours): return np.mean(np.abs(data - data.shift(shift_hours))) def calculate_rmae_for_country(df): rmae = {} rmae['Load'] = calculate_mae(df['Load_entsoe'], df['Load_forecast_entsoe']) / calculate_persistence_mae(df['Load_entsoe'], 168) rmae['Wind_onshore'] = calculate_mae(df['Wind_onshore_entsoe'], df['Wind_onshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_onshore_entsoe'], 24) # Only calculate Wind_offshore rMAE if the columns exist if 'Wind_offshore_entsoe' in df.columns and 'Wind_offshore_forecast_entsoe' in df.columns: rmae['Wind_offshore'] = calculate_mae(df['Wind_offshore_entsoe'], df['Wind_offshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_offshore_entsoe'], 24) else: rmae['Wind_offshore'] = None # Mark as None if not applicable rmae['Solar'] = calculate_mae(df['Solar_entsoe'], df['Solar_forecast_entsoe']) / calculate_persistence_mae(df['Solar_entsoe'], 24) return rmae def create_rmae_dataframe(data_dict): rmae_values = {'Country': [], 'Load': [], 'Wind_onshore': [], 'Wind_offshore': [], 'Solar': []} for country_name, df in data_dict.items(): forecast_columns=get_forecast_columns(country_name) df_filtered = df[forecast_columns].dropna() rmae = calculate_rmae_for_country(df_filtered) rmae_values['Country'].append(country_name) rmae_values['Load'].append(rmae['Load']) rmae_values['Wind_onshore'].append(rmae['Wind_onshore']) rmae_values['Solar'].append(rmae['Solar']) # Append Wind_offshore rMAE only if it's not None (i.e., the country has offshore wind data) if rmae['Wind_offshore'] is not None: rmae_values['Wind_offshore'].append(rmae['Wind_offshore']) else: rmae_values['Wind_offshore'].append(np.nan) # Insert NaN for countries without offshore wind return pd.DataFrame(rmae_values) def plot_rmae_radar_chart(rmae_df): fig = go.Figure() # Dynamically adjust angles to exclude Wind_offshore if all values are NaN angles = ['Load', 'Wind_onshore', 'Solar'] if not rmae_df['Wind_offshore'].isna().all(): # Only include Wind_offshore if it's not NaN for all countries angles.append('Wind_offshore') for _, row in rmae_df.iterrows(): fig.add_trace(go.Scatterpolar( r=[row[angle] for angle in angles], theta=angles, fill='toself', name=row['Country'] )) fig.update_layout( polar=dict( radialaxis=dict(visible=True, range=[0, 1.2]) ), showlegend=True, title="rMAE Radar Chart by Country" ) st.plotly_chart(fig) st.subheader("Net Load Error Map") st.write(""" The net load error map highlights the error in the forecasted versus actual net load for each country. Hover over each country to see details on the latest net load error and the timestamp (with the time zone of the corresponding country) of the last recorded data. """) plot_net_load_error_map(data_dict) st.subheader("rMAE of Forecasts published on ENTSO-E TP") st.write("""The rMAE of Forecasts chart compares the forecast accuracy of the predictions published by ENTSO-E Transparency Platform for Portugal, Spain, Belgium, France, Germany-Luxembourg, Austria, the Netherlands, Italy and Denmark. It shows the rMAE for onshore wind, offshore wind (if any), solar, and load demand, highlighting how well forecasts perform relative to a basic persistence model across these countries and energy sectors.""") rmae_df = create_rmae_dataframe(data_dict) plot_rmae_radar_chart(rmae_df)