EE21 commited on
Commit
2eea40e
1 Parent(s): 7977d5c

Update abstractive_summarization.py

Browse files
Files changed (1) hide show
  1. abstractive_summarization.py +11 -6
abstractive_summarization.py CHANGED
@@ -4,27 +4,32 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
4
  tokenizer = AutoTokenizer.from_pretrained("EE21/BART-ToSSimplify")
5
  model = AutoModelForSeq2SeqLM.from_pretrained("EE21/BART-ToSSimplify")
6
 
 
 
 
 
7
  # Function to summarize using the fine-tuned BART model
8
  def summarize_with_bart_ft(input_text):
9
  inputs = tokenizer.encode("summarize: " + input_text, return_tensors="pt", max_length=1024, truncation=True)
10
- summary_ids = model.generate(inputs, max_length=300, min_length=100, num_beams=2, early_stopping=False, length_penalty=1)
11
  summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
12
  return summary
13
 
14
- # Function to summarize using BART-large-cnn
15
  def summarize_with_bart_cnn(input_text):
16
- pipe = pipeline("summarization", model="facebook/bart-large-cnn")
17
- summary = pipe(input_text, max_length=300, min_length=100, num_beams=2, early_stopping=False, length_penalty=1)
 
18
  return summary
19
 
20
  # Function to summarize using led-base-book-summary
21
  def summarize_with_led(input_text):
22
  pipe_led = pipeline("summarization", model="pszemraj/led-base-book-summary")
23
- summary = pipe_led(input_text, max_length=300, min_length=100, num_beams=2, early_stopping=False, length_penalty=1)
24
  return summary[0]['summary_text']
25
 
26
  # Function to summarize using long-t5-tglobal-base-sci-simplify
27
  def summarize_with_t5(input_text):
28
  pipe_t5 = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify")
29
- summary = pipe_t5(input_text, max_length=300, min_length=100, num_beams=2, early_stopping=False, length_penalty=1)
30
  return summary[0]['summary_text']
 
4
  tokenizer = AutoTokenizer.from_pretrained("EE21/BART-ToSSimplify")
5
  model = AutoModelForSeq2SeqLM.from_pretrained("EE21/BART-ToSSimplify")
6
 
7
+ # Load the BART-large-cnn tokenizer and model
8
+ tokenizer_cnn = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
9
+ model_cnn = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
10
+
11
  # Function to summarize using the fine-tuned BART model
12
  def summarize_with_bart_ft(input_text):
13
  inputs = tokenizer.encode("summarize: " + input_text, return_tensors="pt", max_length=1024, truncation=True)
14
+ summary_ids = model.generate(inputs, max_length=300, min_length=100, num_beams=1, early_stopping=False, length_penalty=1)
15
  summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
16
  return summary
17
 
18
+ # Function to summarize using bart-large-cnn model
19
  def summarize_with_bart_cnn(input_text):
20
+ inputs = tokenizer_cnn.encode("summarize: " + input_text, return_tensors="pt", max_length=1024, truncation=True)
21
+ summary_ids = model_cnn.generate(inputs, max_length=300, min_length=100, num_beams=1, early_stopping=True, length_penalty=1)
22
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
23
  return summary
24
 
25
  # Function to summarize using led-base-book-summary
26
  def summarize_with_led(input_text):
27
  pipe_led = pipeline("summarization", model="pszemraj/led-base-book-summary")
28
+ summary = pipe_led(input_text, max_length=300, min_length=100, num_beams=1, early_stopping=False, length_penalty=1)
29
  return summary[0]['summary_text']
30
 
31
  # Function to summarize using long-t5-tglobal-base-sci-simplify
32
  def summarize_with_t5(input_text):
33
  pipe_t5 = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify")
34
+ summary = pipe_t5(input_text, max_length=300, min_length=100, num_beams=1, early_stopping=False, length_penalty=1)
35
  return summary[0]['summary_text']