Spaces:
Running
Running
File size: 1,537 Bytes
615e9f1 ebef706 813fdb6 00a4c90 ebef706 00a4c90 ebef706 00a4c90 ebef706 00a4c90 ebef706 00a4c90 cc5f9e3 00a4c90 c3f2df0 00a4c90 615e9f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import streamlit as st
from torchvision.transforms import functional as F
import gc
import numpy as np
from modules.streamlit_utils import *
def main():
is_mobile, screen_width = configure_page()
display_banner(is_mobile)
display_title(is_mobile)
display_sidebar()
initialize_session_state()
cropped_image = None
img_selected = load_example_image()
uploaded_file = load_user_image(img_selected, is_mobile)
if uploaded_file is not None:
cropped_image = display_image(uploaded_file, screen_width, is_mobile)
if cropped_image is not None:
get_score_threshold(is_mobile)
if st.button("π Launch Prediction"):
launch_prediction(cropped_image, st.session_state.score_threshold, is_mobile, screen_width)
st.session_state.original_prediction = st.session_state.prediction.copy()
st.rerun()
if 'prediction' in st.session_state and uploaded_file:
#if st.button("π Refresh image"):
#st.rerun()
with st.expander("Show result of prediction"):
with st.spinner('Waiting for result display...'):
display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width))
if not is_mobile:
modify_results()
modeler_options(is_mobile)
display_bpmn_modeler(is_mobile, screen_width)
gc.collect()
if __name__ == "__main__":
print('Starting the app...')
main()
|