File size: 21,053 Bytes
e108fc3
 
 
 
 
 
 
 
 
cbbc2ce
e108fc3
 
00a4c90
e108fc3
 
 
 
 
b0e8a9d
 
 
 
 
 
 
 
 
 
ee93af8
cbbc2ce
 
ee93af8
ca37b38
 
b0e8a9d
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbbc2ce
 
 
 
e108fc3
 
cbbc2ce
e108fc3
cbbc2ce
e108fc3
91857b0
 
e108fc3
 
 
 
 
 
 
 
cbbc2ce
 
 
 
 
 
 
 
 
 
9467fbe
cbbc2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
9467fbe
cbbc2ce
9467fbe
cbbc2ce
 
 
 
 
 
 
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a4c90
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebef706
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a4c90
e108fc3
00a4c90
e108fc3
 
 
 
 
 
 
00a4c90
e108fc3
 
 
 
 
 
 
9467fbe
 
 
 
 
e108fc3
 
 
 
 
 
 
 
00a4c90
 
e108fc3
 
b0e8a9d
 
 
 
 
 
 
 
 
 
d6aec26
 
 
 
 
 
 
 
b0e8a9d
d6aec26
 
 
 
b0e8a9d
d6aec26
 
 
 
b0e8a9d
 
 
 
 
 
 
 
b999af1
 
 
 
8d48eae
b999af1
8d48eae
 
94ef2bf
 
b999af1
 
 
8d48eae
b999af1
 
 
b0e8a9d
8d48eae
 
 
 
 
b0e8a9d
 
 
cbbc2ce
 
 
b0e8a9d
 
cbbc2ce
b0e8a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b999af1
b0e8a9d
 
 
 
6bc613e
b0e8a9d
 
 
 
6bc613e
b0e8a9d
 
 
8d48eae
b0e8a9d
3a0ed7b
 
 
 
 
 
b0e8a9d
 
 
cc79c19
 
 
 
 
 
3a0ed7b
b0e8a9d
cc79c19
b0e8a9d
 
 
 
 
 
 
3a0ed7b
b0e8a9d
 
 
 
3a0ed7b
 
 
b0e8a9d
3a0ed7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e8a9d
 
 
cc79c19
 
 
3a0ed7b
cc79c19
 
b0e8a9d
 
 
cc79c19
 
b0e8a9d
cc79c19
ca37b38
b0e8a9d
6ceb9bd
b0e8a9d
 
3a0ed7b
ca37b38
3a0ed7b
 
e49e1d2
 
3a0ed7b
b0e8a9d
 
 
 
 
 
 
 
ee93af8
ca37b38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e8a9d
 
 
 
 
 
ca37b38
 
 
b0e8a9d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import streamlit as st
from PIL import Image, ImageEnhance
import torch
from torchvision.transforms import functional as F
import gc
import psutil
import numpy as np
from pathlib import Path
import gdown
import os

from modules.OCR import text_prediction, filter_text, mapping_text
from modules.utils import class_dict, arrow_dict, object_dict
from modules.display import draw_stream
from modules.eval import full_prediction
from modules.train import get_faster_rcnn_model, get_arrow_model
from streamlit_image_comparison import image_comparison

from streamlit_image_annotation import detection
from modules.toXML import create_XML
from modules.eval import develop_prediction, generate_data
from modules.utils import class_dict, object_dict

from modules.htlm_webpage import display_bpmn_xml
from streamlit_cropper import st_cropper
from streamlit_image_select import image_select
from streamlit_js_eval import streamlit_js_eval

from modules.toWizard import create_wizard_file
from huggingface_hub import hf_hub_download
import time

from modules.toXML import get_size_elements




def get_memory_usage():
    process = psutil.Process()
    mem_info = process.memory_info()
    return mem_info.rss / (1024 ** 2)  # Return memory usage in MB

def clear_memory():
    st.session_state.clear()
    gc.collect()


# Function to read XML content from a file
def read_xml_file(filepath):
    """ Read XML content from a file """
    with open(filepath, 'r', encoding='utf-8') as file:
        return file.read()




# Suppress the symlink warning
os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = '1'

# Function to load the models only once and use session state to keep track of it
def load_models():
    with st.spinner('Loading model...'):
        model_object = get_faster_rcnn_model(len(object_dict))
        model_arrow = get_arrow_model(len(arrow_dict), 2)

        model_arrow_path = hf_hub_download(repo_id="ELCA-SA/BPMN_Detection", filename="model_arrow.pth")
        model_object_path = hf_hub_download(repo_id="ELCA-SA/BPMN_Detection", filename="model_object.pth")

        # Define paths to save models
        output_arrow = 'model_arrow.pth'
        output_object = 'model_object.pth'

        # Load models
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        # Load model arrow
        if not Path(output_arrow).exists():
            # Download model from Hugging Face Hub
            model_arrow.load_state_dict(torch.load(model_arrow_path, map_location=device))
            st.session_state.model_arrow = model_arrow
            print('Model arrow downloaded from Hugging Face Hub')
            # Save the model locally
            torch.save(model_arrow.state_dict(), output_arrow)
        elif 'model_arrow' not in st.session_state and Path(output_arrow).exists():
            model_arrow.load_state_dict(torch.load(output_arrow, map_location=device))
            print()
            st.session_state.model_arrow = model_arrow
            print('Model arrow loaded from local file')
 

        # Load model object
        if not Path(output_object).exists():
            # Download model from Hugging Face Hub
            model_object.load_state_dict(torch.load(model_object_path, map_location=device))
            st.session_state.model_object = model_object
            print('Model object downloaded from Hugging Face Hub')
            # Save the model locally
            torch.save(model_object.state_dict(), output_object)
        elif 'model_object' not in st.session_state and Path(output_object).exists():
            model_object.load_state_dict(torch.load(output_object, map_location=device))
            print()
            st.session_state.model_object = model_object
            print('Model object loaded from local file\n')


        # Move models to device
        model_arrow.to(device)
        model_object.to(device)

        # Update session state
        st.session_state.model_loaded = True

        return model_object, model_arrow

# Function to prepare the image for processing
def prepare_image(image, pad=True, new_size=(1333, 1333)):
    original_size = image.size
    # Calculate scale to fit the new size while maintaining aspect ratio
    scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
    new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
    # Resize image to new scaled size
    image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))

    if pad:
        enhancer = ImageEnhance.Brightness(image)
        image = enhancer.enhance(1.0)  # Adjust the brightness if necessary
        # Pad the resized image to make it exactly the desired size
        padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
        image = F.pad(image, padding, fill=200, padding_mode='edge')

    return image

# Function to display various options for image annotation
def display_options(image, score_threshold, is_mobile, screen_width):
    col1, col2, col3, col4, col5 = st.columns(5)
    with col1:
        write_class = st.toggle("Write Class", value=True)
        draw_keypoints = st.toggle("Draw Keypoints", value=True)
        draw_boxes = st.toggle("Draw Boxes", value=True)
    with col2:
        draw_text = st.toggle("Draw Text", value=False)
        write_text = st.toggle("Write Text", value=False)
        draw_links = st.toggle("Draw Links", value=False)
    with col3:
        write_score = st.toggle("Write Score", value=True)
        write_idx = st.toggle("Write Index", value=False)
    with col4:
        # Define options for the dropdown menu
        dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))]
        dropdown_options[0] = 'all'
        selected_option = st.selectbox("Show class", dropdown_options)

    # Draw the annotated image with selected options
    annotated_image = draw_stream(
        np.array(image), prediction=st.session_state.original_prediction, text_predictions=st.session_state.text_pred,
        draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text,
        write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_show=selected_option,
        score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True
    )

    if is_mobile is True:
        width = screen_width
    else:
        width = screen_width//2

    # Display the original and annotated images side by side
    image_comparison(
        img1=annotated_image,
        img2=image,
        label1="Annotated Image",
        label2="Original Image",
        starting_position=99,
        width=width,
    )

# Function to perform inference on the uploaded image using the loaded models
def perform_inference(model_object, model_arrow, image, score_threshold, is_mobile, screen_width, iou_threshold=0.5, distance_treshold=30, percentage_text_dist_thresh=0.5):
    uploaded_image = prepare_image(image, pad=False)
              
    img_tensor = F.to_tensor(prepare_image(image.convert('RGB')))

    # Display original image
    if 'image_placeholder' not in st.session_state:
        image_placeholder = st.empty()  # Create an empty placeholder
    if is_mobile is False:
        width = screen_width
        if is_mobile is False:
            width = screen_width//2
        image_placeholder.image(uploaded_image, caption='Original Image', width=width)

    # Perform OCR on the uploaded image
    ocr_results = text_prediction(uploaded_image)

    # Filter and map OCR results to prediction results
    st.session_state.text_pred = filter_text(ocr_results, threshold=0.6)

    # Prediction
    _, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold)

    #Mapping text to prediction
    st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
                
    # Remove the original image display
    image_placeholder.empty()

    # Force garbage collection
    gc.collect()

    return image, st.session_state.prediction, st.session_state.text_mapping

@st.cache_data
def get_image(uploaded_file):
    return Image.open(uploaded_file).convert('RGB')


def configure_page():
    st.set_page_config(layout="wide")
    screen_width = streamlit_js_eval(js_expressions='screen.width', want_output=True, key='SCR')
    is_mobile = screen_width is not None and screen_width < 800
    return is_mobile, screen_width

def display_banner(is_mobile):
    # JavaScript expression to detect dark mode
    dark_mode_js = """
    (window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches)
    """
    
    # Evaluate JavaScript in Streamlit to check for dark mode
    is_dark_mode = streamlit_js_eval(js_expressions=dark_mode_js, key='dark_mode')

    if is_mobile:
        if is_dark_mode:
            st.image("./images/banner_mobile_dark.png", use_column_width=True)
        else:
            st.image("./images/banner_mobile.png", use_column_width=True)
    else:
        if is_dark_mode:
            st.image("./images/banner_desktop_dark.png", use_column_width=True)
        else:
            st.image("./images/banner_desktop.png", use_column_width=True)

def display_title(is_mobile):
    title = "Welcome on the BPMN AI model recognition app"
    if is_mobile:
        title = "Welcome on the mobile version of BPMN AI model recognition app"
    st.title(title)

def display_sidebar():
    st.sidebar.header("This BPMN AI model recognition is proposed by: \n ELCA in collaboration with EPFL.")
    st.sidebar.subheader("Instructions:")
    st.sidebar.text("1. Upload you image")
    st.sidebar.text("2. Crop the image \n  (try to put the BPMN diagram \n   in the center of the image)")
    st.sidebar.text("3. Set the score threshold for\n   prediction (default is 0.5)")
    st.sidebar.text("4. Click on 'Launch Prediction'")
    st.sidebar.text("5. You can now see the\n   annotation and the BPMN XML\n   result")
    st.sidebar.text("6. You can modify the result \n   by clicking on:\n   'Method&Style modification'")
    st.sidebar.text("7. You can change the scale for \n   the XML file and the size of \n   elements (default is 1.0)")
    st.sidebar.text("8. You can modify with modeler \n   and download the result in \n   right format")

    st.sidebar.subheader("If there is an error, try to:")
    st.sidebar.text("1. Change the score threshold")
    st.sidebar.text("2. Re-crop the image by placing\n   the BPMN diagram in the\n   center of the image")
    st.sidebar.text("3. Re-Launch the prediction")

    st.sidebar.subheader("You can close this sidebar")

    for i in range(5):
        st.sidebar.subheader("")

    st.sidebar.subheader("Made with ❤️ by Benjamin.K")

def initialize_session_state():
    if 'pool_bboxes' not in st.session_state:
        st.session_state.pool_bboxes = []
    if 'model_loaded' not in st.session_state:
        st.session_state.model_loaded = False
    if not st.session_state.model_loaded:
        clear_memory()
        load_models()
        st.rerun()

def load_example_image():
    with st.expander("Use example images"):
        img_selected = image_select(
            "If you have no image and just want to test the demo, click on one of these images", 
            ["./images/none.jpg", "./images/example1.jpg", "./images/example2.jpg", "./images/example3.jpg", "./images/example4.jpg"],
            captions=["None", "Example 1", "Example 2", "Example 3", "Example 4"], 
            index=0, 
            use_container_width=False, 
            return_value="original"
        )
        return img_selected

def load_user_image(img_selected, is_mobile):
    if img_selected == './images/none.jpg':
        img_selected = None

    if img_selected is not None:
        uploaded_file = img_selected
    else:
        if is_mobile:
            uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"], accept_multiple_files=False)
        else:
            col1, col2 = st.columns(2)
            with col1:
                uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"])

    return uploaded_file

def display_image(uploaded_file, screen_width, is_mobile):
    
    with st.spinner('Waiting for image display...'):
        original_image = get_image(uploaded_file)
        resized_image = original_image.resize((screen_width // 2, int(original_image.height * (screen_width // 2) / original_image.width)))

        if not is_mobile:
            cropped_image = crop_image(resized_image, original_image)
        else:
            st.image(resized_image, caption="Image", use_column_width=False, width=int(4/5 * screen_width))
            cropped_image = original_image

    return cropped_image

def crop_image(resized_image, original_image):
    marge = 10
    cropped_box = st_cropper(
        resized_image,
        realtime_update=True,
        box_color='#0000FF',
        return_type='box',
        should_resize_image=False,
        default_coords=(marge, resized_image.width - marge, marge, resized_image.height - marge)
    )
    scale_x = original_image.width / resized_image.width
    scale_y = original_image.height / resized_image.height
    x0, y0, x1, y1 = int(cropped_box['left'] * scale_x), int(cropped_box['top'] * scale_y), int((cropped_box['left'] + cropped_box['width']) * scale_x), int((cropped_box['top'] + cropped_box['height']) * scale_y)
    cropped_image = original_image.crop((x0, y0, x1, y1))
    return cropped_image

def get_score_threshold(is_mobile):
    col1, col2 = st.columns(2)
    with col1:
        st.session_state.score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5, step=0.05) 

def launch_prediction(cropped_image, score_threshold, is_mobile, screen_width):
    st.session_state.crop_image = cropped_image
    with st.spinner('Processing...'):
        image, _ , _ = perform_inference(
            st.session_state.model_object, st.session_state.model_arrow, st.session_state.crop_image,
            score_threshold, is_mobile, screen_width, iou_threshold=0.3, distance_treshold=30, percentage_text_dist_thresh=0.5
        )
        st.balloons()    
        return image
    

def modify_results(percentage_text_dist_thresh=0.5):
    with st.expander("Method & Style modification"):
        label_list = list(object_dict.values())
        if st.session_state.prediction['labels'][-1] == 6:
            bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes'][:-1]]
            labels = [int(label) for label in st.session_state.prediction['labels'][:-1]]
        else:
            bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes']]
            labels = [int(label) for label in st.session_state.prediction['labels']]
        for i in range(len(bboxes)):
            bboxes[i][2] = bboxes[i][2] - bboxes[i][0]
            bboxes[i][3] = bboxes[i][3] - bboxes[i][1]

        arrow_bboxes = st.session_state.arrow_pred['boxes']
        arrow_labels = st.session_state.arrow_pred['labels']
        arrow_score = st.session_state.arrow_pred['scores']
        arrow_keypoints = st.session_state.arrow_pred['keypoints']

        # Filter boxes and labels where label is less than 12 to only have objects
        object_bboxes = []
        object_labels = []     
        for i in range(len(bboxes)):
            if labels[i] <= 12:
                object_bboxes.append(bboxes[i])
                object_labels.append(labels[i])

        uploaded_image = prepare_image(st.session_state.crop_image, new_size=(1333, 1333), pad=False)

        new_data = detection(
            image=uploaded_image, bboxes=object_bboxes, labels=object_labels, 
            label_list=label_list, line_width=3, width=2000, use_space=False
        )

        if new_data is not None:
            changes = False
            new_lab = np.array([data['label_id'] for data in new_data])  
            # Convert back to original format
            bboxes = np.array([data['bbox'] for data in new_data])
            object_bboxes = np.array(object_bboxes)

            # Order bboxes and labels
            order = np.argsort(bboxes[:, 0])
            bboxes = bboxes[order]
            new_lab = new_lab[order]

            order2 = np.argsort(object_bboxes[:, 0])
            object_bboxes = object_bboxes[order2]
            object_labels = np.array(object_labels)[order2]

            # Make all values of bboxes integers
            bboxes = bboxes.astype(int)

            tolerance = 1

            object_labels = np.array(object_labels)


            if len(object_bboxes) == len(bboxes):
                # Calculate absolute differences
                abs_diff = np.abs(object_bboxes - bboxes)
                
                for i in range(len(object_bboxes)):
                    for j in range(len(object_bboxes[i])):
                        if abs_diff[i][j] > tolerance:
                            changes = True
                            break

                #check if labels are the same
                if not np.array_equal(object_labels, new_lab):
                    changes = True
            else:   
                changes = True                

            for i in range(len(bboxes)):
                bboxes[i][2] = bboxes[i][2] + bboxes[i][0]
                bboxes[i][3] = bboxes[i][3] + bboxes[i][1]

            object_scores = []
            object_keypoints = []
            for i in range(len(new_data)):
                object_scores.append(1.0)
                object_keypoints.append([[0, 0, 0], [0, 0, 0]])

            new_bbox = np.concatenate((bboxes, arrow_bboxes))
            new_lab = np.concatenate((new_lab, arrow_labels))
            new_scores = np.concatenate((object_scores, arrow_score))
            new_keypoints = np.concatenate((object_keypoints, arrow_keypoints))

            
            boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict = develop_prediction(new_bbox, new_lab, new_scores, new_keypoints, class_dict)

            st.session_state.prediction = generate_data(st.session_state.prediction['image'], boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict)
            st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)

            if changes:
                changes = False
                st.rerun()

            return True

        


def display_bpmn_modeler(is_mobile, screen_width):
    with st.spinner('Waiting for BPMN modeler...'):
        st.session_state.bpmn_xml = create_XML(
            st.session_state.prediction.copy(), st.session_state.text_mapping, 
            st.session_state.size_scale, st.session_state.scale
        )
        st.session_state.vizi_file = create_wizard_file(st.session_state.prediction.copy(), st.session_state.text_mapping)

        display_bpmn_xml(st.session_state.bpmn_xml, st.session_state.vizi_file, is_mobile=is_mobile, screen_width=int(4/5 * screen_width))

        
def find_best_scale(pred, size_elements):
    boxes = pred['boxes']
    labels = pred['labels']

    # Find average size of the tasks in pred
    avg_size = 0
    count = 0
    for i in range(len(boxes)):
        if class_dict[labels[i]] == 'task':
            avg_size += (boxes[i][2] - boxes[i][0]) * (boxes[i][3] - boxes[i][1])
            count += 1

    if count == 0:
        raise ValueError("No tasks found in the provided prediction.")

    avg_size /= count

    # Get the size of a task element from size_elements dictionary
    task_size = size_elements['task']
    task_area = task_size[0] * task_size[1]

    # Find the best scale
    best_scale = (avg_size / task_area) ** 0.5

    if best_scale < 0.5:
        best_scale = 0.5
    elif best_scale > 1:
        best_scale = 1

    return best_scale

def modeler_options(is_mobile):
    if not is_mobile:
        with st.expander("Options for BPMN modeler"):
            col1, col2 = st.columns(2)
            with col1:
                st.session_state.best_scale = find_best_scale(st.session_state.prediction, get_size_elements()) 
                print(f"Best scale: {st.session_state.best_scale}")
                st.session_state.scale = st.slider("Set distance scale for XML file", min_value=0.1, max_value=2.0, value=1/st.session_state.best_scale, step=0.1) 
                st.session_state.size_scale = st.slider("Set size object scale for XML file", min_value=0.5, max_value=2.0, value=1.0, step=0.1) 
    else:
        st.session_state.scale = 1.0
        st.session_state.size_scale = 1.0