Spaces:
Running
Running
File size: 21,053 Bytes
e108fc3 cbbc2ce e108fc3 00a4c90 e108fc3 b0e8a9d ee93af8 cbbc2ce ee93af8 ca37b38 b0e8a9d e108fc3 cbbc2ce e108fc3 cbbc2ce e108fc3 cbbc2ce e108fc3 91857b0 e108fc3 cbbc2ce 9467fbe cbbc2ce 9467fbe cbbc2ce 9467fbe cbbc2ce e108fc3 00a4c90 e108fc3 ebef706 e108fc3 00a4c90 e108fc3 00a4c90 e108fc3 00a4c90 e108fc3 9467fbe e108fc3 00a4c90 e108fc3 b0e8a9d d6aec26 b0e8a9d d6aec26 b0e8a9d d6aec26 b0e8a9d b999af1 8d48eae b999af1 8d48eae 94ef2bf b999af1 8d48eae b999af1 b0e8a9d 8d48eae b0e8a9d cbbc2ce b0e8a9d cbbc2ce b0e8a9d b999af1 b0e8a9d 6bc613e b0e8a9d 6bc613e b0e8a9d 8d48eae b0e8a9d 3a0ed7b b0e8a9d cc79c19 3a0ed7b b0e8a9d cc79c19 b0e8a9d 3a0ed7b b0e8a9d 3a0ed7b b0e8a9d 3a0ed7b b0e8a9d cc79c19 3a0ed7b cc79c19 b0e8a9d cc79c19 b0e8a9d cc79c19 ca37b38 b0e8a9d 6ceb9bd b0e8a9d 3a0ed7b ca37b38 3a0ed7b e49e1d2 3a0ed7b b0e8a9d ee93af8 ca37b38 b0e8a9d ca37b38 b0e8a9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import streamlit as st
from PIL import Image, ImageEnhance
import torch
from torchvision.transforms import functional as F
import gc
import psutil
import numpy as np
from pathlib import Path
import gdown
import os
from modules.OCR import text_prediction, filter_text, mapping_text
from modules.utils import class_dict, arrow_dict, object_dict
from modules.display import draw_stream
from modules.eval import full_prediction
from modules.train import get_faster_rcnn_model, get_arrow_model
from streamlit_image_comparison import image_comparison
from streamlit_image_annotation import detection
from modules.toXML import create_XML
from modules.eval import develop_prediction, generate_data
from modules.utils import class_dict, object_dict
from modules.htlm_webpage import display_bpmn_xml
from streamlit_cropper import st_cropper
from streamlit_image_select import image_select
from streamlit_js_eval import streamlit_js_eval
from modules.toWizard import create_wizard_file
from huggingface_hub import hf_hub_download
import time
from modules.toXML import get_size_elements
def get_memory_usage():
process = psutil.Process()
mem_info = process.memory_info()
return mem_info.rss / (1024 ** 2) # Return memory usage in MB
def clear_memory():
st.session_state.clear()
gc.collect()
# Function to read XML content from a file
def read_xml_file(filepath):
""" Read XML content from a file """
with open(filepath, 'r', encoding='utf-8') as file:
return file.read()
# Suppress the symlink warning
os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = '1'
# Function to load the models only once and use session state to keep track of it
def load_models():
with st.spinner('Loading model...'):
model_object = get_faster_rcnn_model(len(object_dict))
model_arrow = get_arrow_model(len(arrow_dict), 2)
model_arrow_path = hf_hub_download(repo_id="ELCA-SA/BPMN_Detection", filename="model_arrow.pth")
model_object_path = hf_hub_download(repo_id="ELCA-SA/BPMN_Detection", filename="model_object.pth")
# Define paths to save models
output_arrow = 'model_arrow.pth'
output_object = 'model_object.pth'
# Load models
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load model arrow
if not Path(output_arrow).exists():
# Download model from Hugging Face Hub
model_arrow.load_state_dict(torch.load(model_arrow_path, map_location=device))
st.session_state.model_arrow = model_arrow
print('Model arrow downloaded from Hugging Face Hub')
# Save the model locally
torch.save(model_arrow.state_dict(), output_arrow)
elif 'model_arrow' not in st.session_state and Path(output_arrow).exists():
model_arrow.load_state_dict(torch.load(output_arrow, map_location=device))
print()
st.session_state.model_arrow = model_arrow
print('Model arrow loaded from local file')
# Load model object
if not Path(output_object).exists():
# Download model from Hugging Face Hub
model_object.load_state_dict(torch.load(model_object_path, map_location=device))
st.session_state.model_object = model_object
print('Model object downloaded from Hugging Face Hub')
# Save the model locally
torch.save(model_object.state_dict(), output_object)
elif 'model_object' not in st.session_state and Path(output_object).exists():
model_object.load_state_dict(torch.load(output_object, map_location=device))
print()
st.session_state.model_object = model_object
print('Model object loaded from local file\n')
# Move models to device
model_arrow.to(device)
model_object.to(device)
# Update session state
st.session_state.model_loaded = True
return model_object, model_arrow
# Function to prepare the image for processing
def prepare_image(image, pad=True, new_size=(1333, 1333)):
original_size = image.size
# Calculate scale to fit the new size while maintaining aspect ratio
scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
# Resize image to new scaled size
image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))
if pad:
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.0) # Adjust the brightness if necessary
# Pad the resized image to make it exactly the desired size
padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
image = F.pad(image, padding, fill=200, padding_mode='edge')
return image
# Function to display various options for image annotation
def display_options(image, score_threshold, is_mobile, screen_width):
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
write_class = st.toggle("Write Class", value=True)
draw_keypoints = st.toggle("Draw Keypoints", value=True)
draw_boxes = st.toggle("Draw Boxes", value=True)
with col2:
draw_text = st.toggle("Draw Text", value=False)
write_text = st.toggle("Write Text", value=False)
draw_links = st.toggle("Draw Links", value=False)
with col3:
write_score = st.toggle("Write Score", value=True)
write_idx = st.toggle("Write Index", value=False)
with col4:
# Define options for the dropdown menu
dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))]
dropdown_options[0] = 'all'
selected_option = st.selectbox("Show class", dropdown_options)
# Draw the annotated image with selected options
annotated_image = draw_stream(
np.array(image), prediction=st.session_state.original_prediction, text_predictions=st.session_state.text_pred,
draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text,
write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_show=selected_option,
score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True
)
if is_mobile is True:
width = screen_width
else:
width = screen_width//2
# Display the original and annotated images side by side
image_comparison(
img1=annotated_image,
img2=image,
label1="Annotated Image",
label2="Original Image",
starting_position=99,
width=width,
)
# Function to perform inference on the uploaded image using the loaded models
def perform_inference(model_object, model_arrow, image, score_threshold, is_mobile, screen_width, iou_threshold=0.5, distance_treshold=30, percentage_text_dist_thresh=0.5):
uploaded_image = prepare_image(image, pad=False)
img_tensor = F.to_tensor(prepare_image(image.convert('RGB')))
# Display original image
if 'image_placeholder' not in st.session_state:
image_placeholder = st.empty() # Create an empty placeholder
if is_mobile is False:
width = screen_width
if is_mobile is False:
width = screen_width//2
image_placeholder.image(uploaded_image, caption='Original Image', width=width)
# Perform OCR on the uploaded image
ocr_results = text_prediction(uploaded_image)
# Filter and map OCR results to prediction results
st.session_state.text_pred = filter_text(ocr_results, threshold=0.6)
# Prediction
_, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold)
#Mapping text to prediction
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
# Remove the original image display
image_placeholder.empty()
# Force garbage collection
gc.collect()
return image, st.session_state.prediction, st.session_state.text_mapping
@st.cache_data
def get_image(uploaded_file):
return Image.open(uploaded_file).convert('RGB')
def configure_page():
st.set_page_config(layout="wide")
screen_width = streamlit_js_eval(js_expressions='screen.width', want_output=True, key='SCR')
is_mobile = screen_width is not None and screen_width < 800
return is_mobile, screen_width
def display_banner(is_mobile):
# JavaScript expression to detect dark mode
dark_mode_js = """
(window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches)
"""
# Evaluate JavaScript in Streamlit to check for dark mode
is_dark_mode = streamlit_js_eval(js_expressions=dark_mode_js, key='dark_mode')
if is_mobile:
if is_dark_mode:
st.image("./images/banner_mobile_dark.png", use_column_width=True)
else:
st.image("./images/banner_mobile.png", use_column_width=True)
else:
if is_dark_mode:
st.image("./images/banner_desktop_dark.png", use_column_width=True)
else:
st.image("./images/banner_desktop.png", use_column_width=True)
def display_title(is_mobile):
title = "Welcome on the BPMN AI model recognition app"
if is_mobile:
title = "Welcome on the mobile version of BPMN AI model recognition app"
st.title(title)
def display_sidebar():
st.sidebar.header("This BPMN AI model recognition is proposed by: \n ELCA in collaboration with EPFL.")
st.sidebar.subheader("Instructions:")
st.sidebar.text("1. Upload you image")
st.sidebar.text("2. Crop the image \n (try to put the BPMN diagram \n in the center of the image)")
st.sidebar.text("3. Set the score threshold for\n prediction (default is 0.5)")
st.sidebar.text("4. Click on 'Launch Prediction'")
st.sidebar.text("5. You can now see the\n annotation and the BPMN XML\n result")
st.sidebar.text("6. You can modify the result \n by clicking on:\n 'Method&Style modification'")
st.sidebar.text("7. You can change the scale for \n the XML file and the size of \n elements (default is 1.0)")
st.sidebar.text("8. You can modify with modeler \n and download the result in \n right format")
st.sidebar.subheader("If there is an error, try to:")
st.sidebar.text("1. Change the score threshold")
st.sidebar.text("2. Re-crop the image by placing\n the BPMN diagram in the\n center of the image")
st.sidebar.text("3. Re-Launch the prediction")
st.sidebar.subheader("You can close this sidebar")
for i in range(5):
st.sidebar.subheader("")
st.sidebar.subheader("Made with ❤️ by Benjamin.K")
def initialize_session_state():
if 'pool_bboxes' not in st.session_state:
st.session_state.pool_bboxes = []
if 'model_loaded' not in st.session_state:
st.session_state.model_loaded = False
if not st.session_state.model_loaded:
clear_memory()
load_models()
st.rerun()
def load_example_image():
with st.expander("Use example images"):
img_selected = image_select(
"If you have no image and just want to test the demo, click on one of these images",
["./images/none.jpg", "./images/example1.jpg", "./images/example2.jpg", "./images/example3.jpg", "./images/example4.jpg"],
captions=["None", "Example 1", "Example 2", "Example 3", "Example 4"],
index=0,
use_container_width=False,
return_value="original"
)
return img_selected
def load_user_image(img_selected, is_mobile):
if img_selected == './images/none.jpg':
img_selected = None
if img_selected is not None:
uploaded_file = img_selected
else:
if is_mobile:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"], accept_multiple_files=False)
else:
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"])
return uploaded_file
def display_image(uploaded_file, screen_width, is_mobile):
with st.spinner('Waiting for image display...'):
original_image = get_image(uploaded_file)
resized_image = original_image.resize((screen_width // 2, int(original_image.height * (screen_width // 2) / original_image.width)))
if not is_mobile:
cropped_image = crop_image(resized_image, original_image)
else:
st.image(resized_image, caption="Image", use_column_width=False, width=int(4/5 * screen_width))
cropped_image = original_image
return cropped_image
def crop_image(resized_image, original_image):
marge = 10
cropped_box = st_cropper(
resized_image,
realtime_update=True,
box_color='#0000FF',
return_type='box',
should_resize_image=False,
default_coords=(marge, resized_image.width - marge, marge, resized_image.height - marge)
)
scale_x = original_image.width / resized_image.width
scale_y = original_image.height / resized_image.height
x0, y0, x1, y1 = int(cropped_box['left'] * scale_x), int(cropped_box['top'] * scale_y), int((cropped_box['left'] + cropped_box['width']) * scale_x), int((cropped_box['top'] + cropped_box['height']) * scale_y)
cropped_image = original_image.crop((x0, y0, x1, y1))
return cropped_image
def get_score_threshold(is_mobile):
col1, col2 = st.columns(2)
with col1:
st.session_state.score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5, step=0.05)
def launch_prediction(cropped_image, score_threshold, is_mobile, screen_width):
st.session_state.crop_image = cropped_image
with st.spinner('Processing...'):
image, _ , _ = perform_inference(
st.session_state.model_object, st.session_state.model_arrow, st.session_state.crop_image,
score_threshold, is_mobile, screen_width, iou_threshold=0.3, distance_treshold=30, percentage_text_dist_thresh=0.5
)
st.balloons()
return image
def modify_results(percentage_text_dist_thresh=0.5):
with st.expander("Method & Style modification"):
label_list = list(object_dict.values())
if st.session_state.prediction['labels'][-1] == 6:
bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes'][:-1]]
labels = [int(label) for label in st.session_state.prediction['labels'][:-1]]
else:
bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes']]
labels = [int(label) for label in st.session_state.prediction['labels']]
for i in range(len(bboxes)):
bboxes[i][2] = bboxes[i][2] - bboxes[i][0]
bboxes[i][3] = bboxes[i][3] - bboxes[i][1]
arrow_bboxes = st.session_state.arrow_pred['boxes']
arrow_labels = st.session_state.arrow_pred['labels']
arrow_score = st.session_state.arrow_pred['scores']
arrow_keypoints = st.session_state.arrow_pred['keypoints']
# Filter boxes and labels where label is less than 12 to only have objects
object_bboxes = []
object_labels = []
for i in range(len(bboxes)):
if labels[i] <= 12:
object_bboxes.append(bboxes[i])
object_labels.append(labels[i])
uploaded_image = prepare_image(st.session_state.crop_image, new_size=(1333, 1333), pad=False)
new_data = detection(
image=uploaded_image, bboxes=object_bboxes, labels=object_labels,
label_list=label_list, line_width=3, width=2000, use_space=False
)
if new_data is not None:
changes = False
new_lab = np.array([data['label_id'] for data in new_data])
# Convert back to original format
bboxes = np.array([data['bbox'] for data in new_data])
object_bboxes = np.array(object_bboxes)
# Order bboxes and labels
order = np.argsort(bboxes[:, 0])
bboxes = bboxes[order]
new_lab = new_lab[order]
order2 = np.argsort(object_bboxes[:, 0])
object_bboxes = object_bboxes[order2]
object_labels = np.array(object_labels)[order2]
# Make all values of bboxes integers
bboxes = bboxes.astype(int)
tolerance = 1
object_labels = np.array(object_labels)
if len(object_bboxes) == len(bboxes):
# Calculate absolute differences
abs_diff = np.abs(object_bboxes - bboxes)
for i in range(len(object_bboxes)):
for j in range(len(object_bboxes[i])):
if abs_diff[i][j] > tolerance:
changes = True
break
#check if labels are the same
if not np.array_equal(object_labels, new_lab):
changes = True
else:
changes = True
for i in range(len(bboxes)):
bboxes[i][2] = bboxes[i][2] + bboxes[i][0]
bboxes[i][3] = bboxes[i][3] + bboxes[i][1]
object_scores = []
object_keypoints = []
for i in range(len(new_data)):
object_scores.append(1.0)
object_keypoints.append([[0, 0, 0], [0, 0, 0]])
new_bbox = np.concatenate((bboxes, arrow_bboxes))
new_lab = np.concatenate((new_lab, arrow_labels))
new_scores = np.concatenate((object_scores, arrow_score))
new_keypoints = np.concatenate((object_keypoints, arrow_keypoints))
boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict = develop_prediction(new_bbox, new_lab, new_scores, new_keypoints, class_dict)
st.session_state.prediction = generate_data(st.session_state.prediction['image'], boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict)
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
if changes:
changes = False
st.rerun()
return True
def display_bpmn_modeler(is_mobile, screen_width):
with st.spinner('Waiting for BPMN modeler...'):
st.session_state.bpmn_xml = create_XML(
st.session_state.prediction.copy(), st.session_state.text_mapping,
st.session_state.size_scale, st.session_state.scale
)
st.session_state.vizi_file = create_wizard_file(st.session_state.prediction.copy(), st.session_state.text_mapping)
display_bpmn_xml(st.session_state.bpmn_xml, st.session_state.vizi_file, is_mobile=is_mobile, screen_width=int(4/5 * screen_width))
def find_best_scale(pred, size_elements):
boxes = pred['boxes']
labels = pred['labels']
# Find average size of the tasks in pred
avg_size = 0
count = 0
for i in range(len(boxes)):
if class_dict[labels[i]] == 'task':
avg_size += (boxes[i][2] - boxes[i][0]) * (boxes[i][3] - boxes[i][1])
count += 1
if count == 0:
raise ValueError("No tasks found in the provided prediction.")
avg_size /= count
# Get the size of a task element from size_elements dictionary
task_size = size_elements['task']
task_area = task_size[0] * task_size[1]
# Find the best scale
best_scale = (avg_size / task_area) ** 0.5
if best_scale < 0.5:
best_scale = 0.5
elif best_scale > 1:
best_scale = 1
return best_scale
def modeler_options(is_mobile):
if not is_mobile:
with st.expander("Options for BPMN modeler"):
col1, col2 = st.columns(2)
with col1:
st.session_state.best_scale = find_best_scale(st.session_state.prediction, get_size_elements())
print(f"Best scale: {st.session_state.best_scale}")
st.session_state.scale = st.slider("Set distance scale for XML file", min_value=0.1, max_value=2.0, value=1/st.session_state.best_scale, step=0.1)
st.session_state.size_scale = st.slider("Set size object scale for XML file", min_value=0.5, max_value=2.0, value=1.0, step=0.1)
else:
st.session_state.scale = 1.0
st.session_state.size_scale = 1.0 |