File size: 22,150 Bytes
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
acc7969
615e9f1
 
ca37b38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9134c9f
9467fbe
 
 
 
 
 
9134c9f
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca37b38
 
 
 
 
 
 
 
 
 
 
 
615e9f1
ca37b38
615e9f1
 
ca37b38
 
615e9f1
ca37b38
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc7969
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3250939
 
615e9f1
3250939
615e9f1
 
 
 
 
3250939
615e9f1
 
 
acc7969
00a4c90
 
acc7969
00a4c90
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
from torchvision.models.detection import keypointrcnn_resnet50_fpn
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
from torchvision.models.detection import KeypointRCNN_ResNet50_FPN_Weights
import random
import torch
from torch.utils.data import Dataset
import torchvision.transforms.functional as F
import numpy as np
from torch.utils.data.dataloader import default_collate
import cv2
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, Subset, ConcatDataset
import streamlit as st


"""object_dict = {
    0: 'background', 
    1: 'task',
    2: 'exclusiveGateway', 
    3: 'eventBasedGateway', 
    4: 'event', 
    5: 'messageEvent', 
    6: 'timerEvent',
    7: 'dataObject', 
    8: 'dataStore', 
    9: 'pool', 
    10: 'lane', 
}


arrow_dict = {
    0: 'background', 
    1: 'sequenceFlow', 
    2: 'dataAssociation', 
    3: 'messageFlow', 
}

class_dict = {
    0: 'background', 
    1: 'task', 
    2: 'exclusiveGateway', 
    3: 'eventBasedGateway', 
    4: 'event', 
    5: 'messageEvent', 
    6: 'timerEvent',
    7: 'dataObject', 
    8: 'dataStore', 
    9: 'pool', 
    10: 'lane', 
    11: 'sequenceFlow', 
    12: 'dataAssociation', 
    13: 'messageFlow', 
}"""


object_dict = {
    0: 'background', 
    1: 'task', 
    2: 'exclusiveGateway', 
    3: 'event', 
    4: 'parallelGateway', 
    5: 'messageEvent', 
    6: 'pool', 
    7: 'lane', 
    8: 'dataObject', 
    9: 'dataStore', 
    10: 'subProcess', 
    11: 'eventBasedGateway', 
    12: 'timerEvent',
}

arrow_dict = {
    0: 'background', 
    1: 'sequenceFlow', 
    2: 'dataAssociation', 
    3: 'messageFlow', 
}

class_dict = {
    0: 'background', 
    1: 'task', 
    2: 'exclusiveGateway', 
    3: 'event', 
    4: 'parallelGateway', 
    5: 'messageEvent', 
    6: 'pool', 
    7: 'lane', 
    8: 'dataObject', 
    9: 'dataStore', 
    10: 'subProcess', 
    11: 'eventBasedGateway', 
    12: 'timerEvent',
    13: 'sequenceFlow', 
    14: 'dataAssociation', 
    15: 'messageFlow',
}


def is_inside(box1, box2):
    """Check if the center of box1 is inside box2."""
    x_center = (box1[0] + box1[2]) / 2
    y_center = (box1[1] + box1[3]) / 2
    return box2[0] <= x_center <= box2[2] and box2[1] <= y_center <= box2[3]

def is_vertical(box):
    """Determine if the text in the bounding box is vertically aligned."""
    width = box[2] - box[0]
    height = box[3] - box[1]
    return (height > 2*width)

def rescale_boxes(scale, boxes):
    for i in range(len(boxes)):
                boxes[i] = [boxes[i][0]*scale,
                            boxes[i][1]*scale,
                            boxes[i][2]*scale,
                            boxes[i][3]*scale]
    return boxes

def iou(box1, box2):
    # Calcule l'intersection des deux boîtes englobantes
    inter_box = [max(box1[0], box2[0]), max(box1[1], box2[1]), min(box1[2], box2[2]), min(box1[3], box2[3])]
    inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])

    # Calcule l'union des deux boîtes englobantes
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
    union_area = box1_area + box2_area - inter_area

    return inter_area / union_area

def proportion_inside(box1, box2):
    # Calculate the areas of both boxes
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])

    # Determine the bigger and smaller boxes
    if box1_area > box2_area:
        big_box = box1
        small_box = box2
    else:
        big_box = box2
        small_box = box1

    # Calculate the intersection of the two bounding boxes
    inter_box = [max(small_box[0], big_box[0]), max(small_box[1], big_box[1]), min(small_box[2], big_box[2]), min(small_box[3], big_box[3])]
    inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])

    # Calculate the proportion of the smaller box inside the bigger box
    if (small_box[2] - small_box[0]) * (small_box[3] - small_box[1]) == 0:
        return 0
    proportion = inter_area / ((small_box[2] - small_box[0]) * (small_box[3] - small_box[1]))

    # Ensure the proportion is at most 100%
    return min(proportion, 1.0)

def resize_boxes(boxes, original_size, target_size):
    """
    Resizes bounding boxes according to a new image size.

    Parameters:
    - boxes (np.array): The original bounding boxes as a numpy array of shape [N, 4].
    - original_size (tuple): The original size of the image as (width, height).
    - target_size (tuple): The desired size to resize the image to as (width, height).

    Returns:
    - np.array: The resized bounding boxes as a numpy array of shape [N, 4].
    """
    orig_width, orig_height = original_size
    target_width, target_height = target_size

    # Calculate the ratios for width and height
    width_ratio = target_width / orig_width
    height_ratio = target_height / orig_height

    # Apply the ratios to the bounding boxes
    boxes[:, 0] *= width_ratio
    boxes[:, 1] *= height_ratio
    boxes[:, 2] *= width_ratio
    boxes[:, 3] *= height_ratio

    return boxes

def resize_keypoints(keypoints: np.ndarray, original_size: tuple, target_size: tuple) -> np.ndarray:
    """
    Resize keypoints based on the original and target dimensions of an image.

    Parameters:
    - keypoints (np.ndarray): The array of keypoints, where each keypoint is represented by its (x, y) coordinates.
    - original_size (tuple): The width and height of the original image (width, height).
    - target_size (tuple): The width and height of the target image (width, height).

    Returns:
    - np.ndarray: The resized keypoints.

    Explanation:
    The function calculates the ratio of the target dimensions to the original dimensions.
    It then applies these ratios to the x and y coordinates of each keypoint to scale them
    appropriately to the target image size.
    """

    orig_width, orig_height = original_size
    target_width, target_height = target_size

    # Calculate the ratios for width and height scaling
    width_ratio = target_width / orig_width
    height_ratio = target_height / orig_height

    # Apply the scaling ratios to the x and y coordinates of each keypoint
    keypoints[:, 0] *= width_ratio  # Scale x coordinates
    keypoints[:, 1] *= height_ratio  # Scale y coordinates

    return keypoints


def write_results(name_model,metrics_list,start_epoch):
  with open('./results/'+ name_model+ '.txt', 'w') as f:
        for i in range(len(metrics_list[0])):
          f.write(f"{i+1+start_epoch},{metrics_list[0][i]},{metrics_list[1][i]},{metrics_list[2][i]},{metrics_list[3][i]},{metrics_list[4][i]},{metrics_list[5][i]},{metrics_list[6][i]},{metrics_list[7][i]},{metrics_list[8][i]},{metrics_list[9][i]} \n")


def find_other_keypoint(idx, keypoints, boxes):
    box = boxes[idx]
    key1,key2 = keypoints[idx]
    x1, y1, x2, y2 = box
    center = ((x1 + x2) // 2, (y1 + y2) // 2)
    average_keypoint = (key1 + key2) // 2
    #find the opposite keypoint to the center
    if average_keypoint[0] < center[0]:
        x = center[0] + abs(center[0] - average_keypoint[0])
    else:
        x = center[0] - abs(center[0] - average_keypoint[0])
    if average_keypoint[1] < center[1]:
        y = center[1] + abs(center[1] - average_keypoint[1])
    else:
        y = center[1] - abs(center[1] - average_keypoint[1])
    return x, y, average_keypoint[0], average_keypoint[1]
    

def filter_overlap_boxes(boxes, scores, labels, keypoints, iou_threshold=0.5):
    """
    Filters overlapping boxes based on the Intersection over Union (IoU) metric, keeping only the boxes with the highest scores.

    Parameters:
    - boxes (np.ndarray): Array of bounding boxes with shape (N, 4), where each row contains [x_min, y_min, x_max, y_max].
    - scores (np.ndarray): Array of scores for each box, reflecting the confidence of detection.
    - labels (np.ndarray): Array of labels corresponding to each box.
    - keypoints (np.ndarray): Array of keypoints associated with each box.
    - iou_threshold (float): Threshold for IoU above which a box is considered overlapping.

    Returns:
    - tuple: Filtered boxes, scores, labels, and keypoints.
    """
    # Calculate the area of each bounding box to use in IoU calculation.
    areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
    
    # Sort the indices of the boxes based on their scores in descending order.
    order = scores.argsort()[::-1]
    
    keep = []  # List to store indices of boxes to keep.
    
    while order.size > 0:
        # Take the first index (highest score) from the sorted list.
        i = order[0]
        keep.append(i)  # Add this index to 'keep' list.
        
        # Compute the coordinates of the intersection rectangle.
        xx1 = np.maximum(boxes[i, 0], boxes[order[1:], 0])
        yy1 = np.maximum(boxes[i, 1], boxes[order[1:], 1])
        xx2 = np.minimum(boxes[i, 2], boxes[order[1:], 2])
        yy2 = np.minimum(boxes[i, 3], boxes[order[1:], 3])
        
        # Compute the area of the intersection rectangle.
        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        inter = w * h
        
        # Calculate IoU and find boxes with IoU less than the threshold to keep.
        iou = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(iou <= iou_threshold)[0]
        
        # Update the list of box indices to consider in the next iteration.
        order = order[inds + 1]  # Skip the first element since it's already included in 'keep'.
    
    # Use the indices in 'keep' to select the boxes, scores, labels, and keypoints to return.
    boxes = boxes[keep]
    scores = scores[keep]
    labels = labels[keep]
    keypoints = keypoints[keep]
    
    return boxes, scores, labels, keypoints



def draw_annotations(image, 
                     target=None, 
                     prediction=None, 
                     full_prediction=None,
                     text_predictions=None, 
                     model_dict=class_dict, 
                     draw_keypoints=False, 
                     draw_boxes=False, 
                     draw_text=False,
                     draw_links=False,
                     draw_twins=False,
                     write_class=False,
                     write_score=False, 
                     write_text=False,
                     write_idx=False,
                     score_threshold=0.4, 
                     keypoints_correction=False,
                     only_print=None,
                     axis=False,
                     return_image=False,
                     new_size=(1333,800),
                     resize=False):
    """
    Draws annotations on images including bounding boxes, keypoints, links, and text.
    
    Parameters:
    - image (np.array): The image on which annotations will be drawn.
    - target (dict): Ground truth data containing boxes, labels, etc.
    - prediction (dict): Prediction data from a model.
    - full_prediction (dict): Additional detailed prediction data, potentially including relationships.
    - text_predictions (tuple): OCR text predictions containing bounding boxes and texts.
    - model_dict (dict): Mapping from class IDs to class names.
    - draw_keypoints (bool): Flag to draw keypoints.
    - draw_boxes (bool): Flag to draw bounding boxes.
    - draw_text (bool): Flag to draw text annotations.
    - draw_links (bool): Flag to draw links between annotations.
    - draw_twins (bool): Flag to draw twins keypoints.
    - write_class (bool): Flag to write class names near the annotations.
    - write_score (bool): Flag to write scores near the annotations.
    - write_text (bool): Flag to write OCR recognized text.
    - score_threshold (float): Threshold for scores above which annotations will be drawn.
    - only_print (str): Specific class name to filter annotations by.
    - resize (bool): Whether to resize annotations to fit the image size.
    """

    # Convert image to RGB (if not already in that format)
    if prediction is None:
        image = image.squeeze(0).permute(1, 2, 0).cpu().numpy()

    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image_copy = image.copy()
    scale = max(image.shape[0], image.shape[1]) / 1000

    # Function to draw bounding boxes and keypoints
    def draw(data,is_prediction=False):
        """ Helper function to draw annotations based on provided data. """

        for i in range(len(data['boxes'])):
            if is_prediction:
                box = data['boxes'][i].tolist()
                x1, y1, x2, y2 = box
                if resize:
                    x1, y1, x2, y2 = resize_boxes(np.array([box]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
                score = data['scores'][i].item()
                if score < score_threshold:
                    continue
            else:
                box = data['boxes'][i].tolist()
                x1, y1, x2, y2 = box
            if draw_boxes:
                if only_print is not None:
                    if data['labels'][i] != list(model_dict.values()).index(only_print):
                        continue
                cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 0) if is_prediction else (0, 0, 0), int(2*scale))
            if is_prediction and write_score:
                cv2.putText(image_copy, str(round(score, 2)), (int(x1), int(y1) + int(15*scale)), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (100,100, 255), 2)

            if write_class and 'labels' in data:
                class_id = data['labels'][i].item()
                cv2.putText(image_copy, model_dict[class_id], (int(x1), int(y1) - int(2*scale)), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (255, 100, 100), 2)

            if write_idx:
                cv2.putText(image_copy, str(i), (int(x1) + int(15*scale), int(y1) + int(15*scale)), cv2.FONT_HERSHEY_SIMPLEX, 2*scale, (0,0, 0), 2)
  

            # Draw keypoints if available
            if draw_keypoints and 'keypoints' in data:
                if is_prediction and keypoints_correction:
                    for idx, (key1, key2) in enumerate(data['keypoints']):
                        if data['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
                                    list(model_dict.values()).index('messageFlow'),
                                    list(model_dict.values()).index('dataAssociation')]:
                            continue
                        # Calculate the Euclidean distance between the two keypoints
                        distance = np.linalg.norm(key1[:2] - key2[:2])
                
                        if distance < 5:
                            x_new,y_new, x,y = find_other_keypoint(idx, data['keypoints'], data['boxes'])
                            data['keypoints'][idx][0] = torch.tensor([x_new, y_new,1])
                            data['keypoints'][idx][1] = torch.tensor([x, y,1])
                            print("keypoint has been changed")
                for i in range(len(data['keypoints'])):
                    kp = data['keypoints'][i]
                    for j in range(kp.shape[0]):
                        if is_prediction and data['labels'][i] != list(model_dict.values()).index('sequenceFlow') and data['labels'][i] != list(model_dict.values()).index('messageFlow') and data['labels'][i] != list(model_dict.values()).index('dataAssociation'):
                            continue
                        if is_prediction:
                            score = data['scores'][i]
                            if score < score_threshold:
                                continue
                        x,y,v = np.array(kp[j])
                        if resize:
                            x, y, v = resize_keypoints(np.array([kp[j]]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
                        if j == 0:
                            cv2.circle(image_copy, (int(x), int(y)), int(5*scale), (0, 0, 255), -1)
                        else:
                            cv2.circle(image_copy, (int(x), int(y)), int(5*scale), (255, 0, 0), -1)

        # Draw text predictions if available
        if (draw_text or write_text) and text_predictions is not None:                        
            for i in range(len(text_predictions[0])):
                x1, y1, x2, y2 = text_predictions[0][i]
                text = text_predictions[1][i]
                if resize:
                    x1, y1, x2, y2 = resize_boxes(np.array([[float(x1), float(y1), float(x2), float(y2)]]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0]
                if draw_text:
                    cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), int(2*scale))
                if write_text:
                    cv2.putText(image_copy, text, (int(x1 + int(2*scale)), int((y1+y2)/2) ), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (0,0, 0), 2)
            
    def draw_with_links(full_prediction):
        '''Draws links between objects based on the full prediction data.'''
        #check if keypoints detected are the same
        if draw_twins and full_prediction is not None:
            # Pre-calculate indices for performance
            circle_color = (0, 255, 0)  # Green color for the circle
            circle_radius = int(10 * scale)  # Circle radius scaled by image scale

            for idx, (key1, key2) in enumerate(full_prediction['keypoints']):
                if full_prediction['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
                         list(model_dict.values()).index('messageFlow'),
                         list(model_dict.values()).index('dataAssociation')]:
                    continue
                # Calculate the Euclidean distance between the two keypoints
                distance = np.linalg.norm(key1[:2] - key2[:2])
                if distance < 10:
                    x_new,y_new, x,y = find_other_keypoint(idx,full_prediction)
                    cv2.circle(image_copy, (int(x), int(y)), circle_radius, circle_color, -1)
                    cv2.circle(image_copy, (int(x_new), int(y_new)), circle_radius, (0,0,0), -1)

        # Draw links between objects
        if draw_links==True and full_prediction is not None:
            for i, (start_idx, end_idx) in enumerate(full_prediction['links']):
                if start_idx is None or end_idx is None:
                    continue
                start_box = full_prediction['boxes'][start_idx]
                end_box = full_prediction['boxes'][end_idx]
                current_box = full_prediction['boxes'][i]
                # Calculate the center of each bounding box
                start_center = ((start_box[0] + start_box[2]) // 2, (start_box[1] + start_box[3]) // 2)
                end_center = ((end_box[0] + end_box[2]) // 2, (end_box[1] + end_box[3]) // 2)
                current_center = ((current_box[0] + current_box[2]) // 2, (current_box[1] + current_box[3]) // 2)
                # Draw a line between the centers of the connected objects
                cv2.line(image_copy, (int(start_center[0]), int(start_center[1])), (int(current_center[0]), int(current_center[1])), (0, 0, 255), int(2*scale))
                cv2.line(image_copy, (int(current_center[0]), int(current_center[1])), (int(end_center[0]), int(end_center[1])), (255, 0, 0), int(2*scale))

                i+=1

    # Draw GT annotations
    if target is not None:
        draw(target, is_prediction=False)
    # Draw predictions
    if prediction is not None:
        #prediction = prediction[0] 
        draw(prediction, is_prediction=True)
    # Draw links with full predictions
    if full_prediction is not None:
        draw_with_links(full_prediction)

    # Display the image
    image_copy = cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB)
    plt.figure(figsize=(12, 12))
    plt.imshow(image_copy)
    if axis==False:
        plt.axis('off')
    plt.show()

    if return_image:
        return image_copy

def find_closest_object(keypoint, boxes, labels):
    """
    Find the closest object to a keypoint based on their proximity.

    Parameters:
    - keypoint (numpy.ndarray): The coordinates of the keypoint.
    - boxes (numpy.ndarray): The bounding boxes of the objects.

    Returns:
    - int or None: The index of the closest object to the keypoint, or None if no object is found.
    """
    closest_object_idx = None
    best_point = None  
    min_distance = float('inf')
    # Iterate over each bounding box
    for i, box in enumerate(boxes):
        if labels[i] in [list(class_dict.values()).index('sequenceFlow'),
                         list(class_dict.values()).index('messageFlow'),
                         list(class_dict.values()).index('dataAssociation'),
                         #list(class_dict.values()).index('pool'),
                         list(class_dict.values()).index('lane')]:
            continue
        x1, y1, x2, y2 = box

        top = ((x1+x2)/2, y1)
        bottom = ((x1+x2)/2, y2)
        left = (x1, (y1+y2)/2)
        right = (x2, (y1+y2)/2)
        points = [left, top , right, bottom]

        pos_dict = {0:'left', 1:'top', 2:'right', 3:'bottom'}

        # Calculate the distance between the keypoint and the center of the bounding box
        for pos, (point) in enumerate(points):
            distance = np.linalg.norm(keypoint[:2] - point)
            # Update the closest object index if this object is closer
            if distance < min_distance:
                min_distance = distance
                closest_object_idx = i
                best_point = pos_dict[pos]

    return closest_object_idx, best_point


def error(text='There is an error in the detection'):
    st.error(text, icon="🚨")

def warning(text='Some element are maybe not detected, verify the results, try to modify the parameters or try to add it in the method and style step.'):
    st.warning(text, icon="⚠️")