sketch-to-BPMN / modules /streamlit_utils.py
BenjiELCA's picture
pool align width and modification works better
b0e8a9d
raw
history blame
16.8 kB
import streamlit as st
from PIL import Image, ImageEnhance
import torch
from torchvision.transforms import functional as F
import gc
import psutil
import numpy as np
from pathlib import Path
import gdown
from modules.OCR import text_prediction, filter_text, mapping_text
from modules.utils import class_dict, arrow_dict, object_dict
from modules.display import draw_stream
from modules.eval import full_prediction
from modules.train import get_faster_rcnn_model, get_arrow_model
from streamlit_image_comparison import image_comparison
from streamlit_image_annotation import detection
from modules.toXML import create_XML
from modules.eval import develop_prediction, generate_data
from modules.utils import class_dict, object_dict
from modules.htlm_webpage import display_bpmn_xml
from streamlit_cropper import st_cropper
from streamlit_image_select import image_select
from streamlit_js_eval import streamlit_js_eval
def get_memory_usage():
process = psutil.Process()
mem_info = process.memory_info()
return mem_info.rss / (1024 ** 2) # Return memory usage in MB
def clear_memory():
st.session_state.clear()
gc.collect()
def sidebar():# Sidebar content
st.sidebar.header("This BPMN AI model recognition is proposed by: \n ELCA in collaboration with EPFL.")
st.sidebar.subheader("Instructions:")
st.sidebar.text("1. Upload you image")
st.sidebar.text("2. Crop the image \n (try to put the BPMN diagram \n in the center of the image)")
st.sidebar.text("3. Set the score threshold \n for prediction (default is 0.5)")
st.sidebar.text("4. Click on 'Launch Prediction'")
st.sidebar.text("5. You can now see the annotation \n and the BPMN XML result")
st.sidebar.text("6. You can change the scale for \n the XML file (default is 1.0)")
st.sidebar.text("7. You can modify and download \n the result in right format")
st.sidebar.subheader("If there is an error, try to:")
st.sidebar.text("1. Change the score threshold")
st.sidebar.text("2. Re-crop the image by placing\n the BPMN diagram in the center\n of the image")
st.sidebar.text("3. Re-Launch the prediction")
st.sidebar.subheader("You can close this sidebar")
# Function to read XML content from a file
def read_xml_file(filepath):
""" Read XML content from a file """
with open(filepath, 'r', encoding='utf-8') as file:
return file.read()
# Function to load the models only once and use session state to keep track of it
def load_models():
with st.spinner('Loading model...'):
model_object = get_faster_rcnn_model(len(object_dict))
model_arrow = get_arrow_model(len(arrow_dict),2)
url_arrow = 'https://drive.google.com/uc?id=1vv1X_r_lZ8gnzMAIKxcVEb_T_Qb-NkyA'
url_object = 'https://drive.google.com/uc?id=1b1bqogxqdPS-SnvaOfWJGV1I1qOrTKh5'
# Define paths to save models
output_arrow = 'model_arrow.pth'
output_object = 'model_object.pth'
# Download models using gdown
if not Path(output_arrow).exists():
# Download models using gdown
gdown.download(url_arrow, output_arrow, quiet=False)
else:
print('Model arrow downloaded from local')
if not Path(output_object).exists():
gdown.download(url_object, output_object, quiet=False)
else:
print('Model object downloaded from local')
# Load models
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_arrow.load_state_dict(torch.load(output_arrow, map_location=device))
model_object.load_state_dict(torch.load(output_object, map_location=device))
st.session_state.model_loaded = True
st.session_state.model_arrow = model_arrow
st.session_state.model_object = model_object
return model_object, model_arrow
# Function to prepare the image for processing
def prepare_image(image, pad=True, new_size=(1333, 1333)):
original_size = image.size
# Calculate scale to fit the new size while maintaining aspect ratio
scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
# Resize image to new scaled size
image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))
if pad:
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.0) # Adjust the brightness if necessary
# Pad the resized image to make it exactly the desired size
padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
image = F.pad(image, padding, fill=200, padding_mode='edge')
return image
# Function to display various options for image annotation
def display_options(image, score_threshold, is_mobile, screen_width):
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
write_class = st.toggle("Write Class", value=True)
draw_keypoints = st.toggle("Draw Keypoints", value=True)
draw_boxes = st.toggle("Draw Boxes", value=True)
with col2:
draw_text = st.toggle("Draw Text", value=False)
write_text = st.toggle("Write Text", value=False)
draw_links = st.toggle("Draw Links", value=False)
with col3:
write_score = st.toggle("Write Score", value=True)
write_idx = st.toggle("Write Index", value=False)
with col4:
# Define options for the dropdown menu
dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))]
dropdown_options[0] = 'all'
selected_option = st.selectbox("Show class", dropdown_options)
# Draw the annotated image with selected options
annotated_image = draw_stream(
np.array(image), prediction=st.session_state.original_prediction, text_predictions=st.session_state.text_pred,
draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text,
write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_show=selected_option,
score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True
)
if is_mobile is True:
width = screen_width
else:
width = screen_width//2
# Display the original and annotated images side by side
image_comparison(
img1=annotated_image,
img2=image,
label1="Annotated Image",
label2="Original Image",
starting_position=99,
width=width,
)
# Function to perform inference on the uploaded image using the loaded models
def perform_inference(model_object, model_arrow, image, score_threshold, is_mobile, screen_width, iou_threshold=0.5, distance_treshold=30, percentage_text_dist_thresh=0.5):
uploaded_image = prepare_image(image, pad=False)
img_tensor = F.to_tensor(prepare_image(image.convert('RGB')))
# Display original image
if 'image_placeholder' not in st.session_state:
image_placeholder = st.empty() # Create an empty placeholder
if is_mobile is False:
width = screen_width
if is_mobile is False:
width = screen_width//2
image_placeholder.image(uploaded_image, caption='Original Image', width=width)
# Prediction
_, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold)
# Perform OCR on the uploaded image
ocr_results = text_prediction(uploaded_image)
# Filter and map OCR results to prediction results
st.session_state.text_pred = filter_text(ocr_results, threshold=0.6)
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
# Remove the original image display
image_placeholder.empty()
# Force garbage collection
gc.collect()
return image, st.session_state.prediction, st.session_state.text_mapping
@st.cache_data
def get_image(uploaded_file):
return Image.open(uploaded_file).convert('RGB')
def configure_page():
st.set_page_config(layout="wide")
screen_width = streamlit_js_eval(js_expressions='screen.width', want_output=True, key='SCR')
is_mobile = screen_width is not None and screen_width < 800
return is_mobile, screen_width
def display_banner(is_mobile):
if is_mobile:
st.image("./images/banner_mobile.png", use_column_width=True)
else:
st.image("./images/banner_desktop.png", use_column_width=True)
def display_title(is_mobile):
title = "Welcome on the BPMN AI model recognition app"
if is_mobile:
title = "Welcome on the mobile version of BPMN AI model recognition app"
st.title(title)
def display_sidebar():
sidebar()
def initialize_session_state():
if 'pool_bboxes' not in st.session_state:
st.session_state.pool_bboxes = []
if 'model_object' not in st.session_state or 'model_arrow' not in st.session_state:
clear_memory()
load_models()
def load_example_image():
with st.expander("Use example images"):
img_selected = image_select(
"If you have no image and just want to test the demo, click on one of these images",
["./images/none.jpg", "./images/example1.jpg", "./images/example2.jpg", "./images/example3.jpg", "./images/example4.jpg"],
captions=["None", "Example 1", "Example 2", "Example 3", "Example 4"],
index=0,
use_container_width=False,
return_value="original"
)
return img_selected
def load_user_image(img_selected, is_mobile):
if img_selected == './images/none.jpg':
img_selected = None
if img_selected is not None:
uploaded_file = img_selected
else:
if is_mobile:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"], accept_multiple_files=False)
else:
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"])
return uploaded_file
def display_image(uploaded_file, screen_width, is_mobile):
with st.spinner('Waiting for image display...'):
original_image = get_image(uploaded_file)
resized_image = original_image.resize((screen_width // 2, int(original_image.height * (screen_width // 2) / original_image.width)))
if not is_mobile:
cropped_image = crop_image(resized_image, original_image)
else:
st.image(resized_image, caption="Image", use_column_width=False, width=int(4/5 * screen_width))
cropped_image = original_image
return cropped_image
def crop_image(resized_image, original_image):
marge = 10
cropped_box = st_cropper(
resized_image,
realtime_update=True,
box_color='#0000FF',
return_type='box',
should_resize_image=False,
default_coords=(marge, resized_image.width - marge, marge, resized_image.height - marge)
)
scale_x = original_image.width / resized_image.width
scale_y = original_image.height / resized_image.height
x0, y0, x1, y1 = int(cropped_box['left'] * scale_x), int(cropped_box['top'] * scale_y), int((cropped_box['left'] + cropped_box['width']) * scale_x), int((cropped_box['top'] + cropped_box['height']) * scale_y)
cropped_image = original_image.crop((x0, y0, x1, y1))
return cropped_image
def get_score_threshold(is_mobile):
col1, col2 = st.columns(2)
with col1:
st.session_state.score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5 if not is_mobile else 0.6, step=0.05)
def launch_prediction(cropped_image, score_threshold, is_mobile, screen_width):
st.session_state.crop_image = cropped_image
with st.spinner('Processing...'):
perform_inference(
st.session_state.model_object, st.session_state.model_arrow, st.session_state.crop_image,
score_threshold, is_mobile, screen_width, iou_threshold=0.3, distance_treshold=30, percentage_text_dist_thresh=0.5
)
st.balloons()
def modify_results(percentage_text_dist_thresh=0.5):
with st.expander("Method and Style modification (beta version)"):
label_list = list(object_dict.values())
bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes']]
for i in range(len(bboxes)):
bboxes[i][2] = bboxes[i][2] - bboxes[i][0]
bboxes[i][3] = bboxes[i][3] - bboxes[i][1]
labels = [int(label) for label in st.session_state.prediction['labels']]
# Filter boxes and labels where label is less than 12
object_bboxes = []
object_labels = []
arrow_bboxes = []
arrow_labels = []
for i in range(len(bboxes)):
if labels[i] <= 12:
object_bboxes.append(bboxes[i])
object_labels.append(labels[i])
else:
arrow_bboxes.append(bboxes[i])
arrow_labels.append(labels[i])
original_obj_len = len(object_bboxes)
uploaded_image = prepare_image(st.session_state.crop_image, new_size=(1333, 1333), pad=False)
new_labels = detection(
image=uploaded_image, bboxes=object_bboxes, labels=object_labels,
label_list=label_list, line_width=3, width=2000, use_space=False
)
if new_labels is not None:
new_lab = np.array([label['label_id'] for label in new_labels])
# Convert back to original format
bboxes = np.array([label['bbox'] for label in new_labels])
for i in range(len(bboxes)):
bboxes[i][2] = bboxes[i][2] + bboxes[i][0]
bboxes[i][3] = bboxes[i][3] + bboxes[i][1]
for i in range(len(arrow_bboxes)):
arrow_bboxes[i][2] = arrow_bboxes[i][2] + arrow_bboxes[i][0]
arrow_bboxes[i][3] = arrow_bboxes[i][3] + arrow_bboxes[i][1]
new_bbox = np.concatenate((bboxes, arrow_bboxes))
new_lab = np.concatenate((new_lab, arrow_labels))
scores = st.session_state.prediction['scores']
keypoints = st.session_state.prediction['keypoints']
#delete element in keypoints to make it match the new number of boxes
keypoints = keypoints.tolist()
scores = scores.tolist()
diff = original_obj_len-len(bboxes)
if diff > 0:
for i in range(diff):
keypoints.pop(0)
scores.pop(0)
elif diff < 0:
for i in range(-diff):
keypoints.insert(0, [[0, 0, 0], [0, 0, 0]])
scores.insert(0, 0.0)
keypoints = np.array(keypoints)
scores = np.array(scores)
boxes, labels, scores, keypoints, flow_links, best_points, pool_dict = develop_prediction(new_bbox, new_lab, scores, keypoints, class_dict, correction=False)
st.session_state.prediction = generate_data(st.session_state.prediction['image'], boxes, labels, scores, keypoints, flow_links, best_points, pool_dict, class_dict)
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
st.rerun()
def display_bpmn_modeler(is_mobile, screen_width):
with st.spinner('Waiting for BPMN modeler...'):
st.session_state.bpmn_xml = create_XML(
st.session_state.prediction.copy(), st.session_state.text_mapping,
st.session_state.size_scale, st.session_state.scale
)
display_bpmn_xml(st.session_state.bpmn_xml, is_mobile=is_mobile, screen_width=int(4/5 * screen_width))
def modeler_options(is_mobile):
if not is_mobile:
with st.expander("Options for BPMN modeler"):
col1, col2 = st.columns(2)
with col1:
st.session_state.scale = st.slider("Set distance scale for XML file", min_value=0.1, max_value=2.0, value=1.0, step=0.1)
st.session_state.size_scale = st.slider("Set size object scale for XML file", min_value=0.5, max_value=2.0, value=1.0, step=0.1)
else:
st.session_state.scale = 1.0
st.session_state.size_scale = 1.0