Spaces:
Running
Running
import streamlit as st | |
from torchvision.transforms import functional as F | |
import gc | |
import numpy as np | |
from modules.streamlit_utils import * | |
from modules.utils import error | |
def main(): | |
""" | |
Main function to run the Streamlit application for BPMN AI model recognition. | |
""" | |
# Check if the model is loaded in the session state | |
if 'model_loaded' not in st.session_state: | |
st.session_state.model_loaded = False | |
st.session_state.first_run = True | |
# Configure the Streamlit page and retrieve screen details | |
is_mobile, screen_width = configure_page() | |
# Display various UI components | |
display_banner(is_mobile) | |
display_title(is_mobile) | |
display_sidebar() | |
# Initialize session state variables | |
initialize_session_state() | |
cropped_image = None | |
# Load example or user-uploaded image | |
img_selected = load_example_image() | |
uploaded_file = load_user_image(img_selected, is_mobile) | |
# Display the uploaded image and allow cropping | |
if uploaded_file is not None: | |
cropped_image = display_image(uploaded_file, screen_width, is_mobile) | |
# Set score threshold for prediction if an image is uploaded | |
if uploaded_file is not None: | |
get_score_threshold(is_mobile) | |
# Launch prediction when the button is clicked | |
if st.button("π Launch Prediction"): | |
st.session_state.image = launch_prediction(cropped_image, st.session_state.score_threshold, is_mobile, screen_width) | |
st.session_state.original_prediction = st.session_state.prediction.copy() | |
st.rerun() | |
# Create placeholders for different sections of the UI | |
prediction_result_placeholder = st.empty() | |
additional_options_placeholder = st.empty() | |
modeler_placeholder = st.empty() | |
# Display prediction results and options if predictions are available | |
if 'prediction' in st.session_state and uploaded_file: | |
if st.session_state.image != cropped_image: | |
print('Image has changed') | |
# Delete the prediction if the image has changed | |
del st.session_state.prediction | |
return | |
if len(st.session_state.prediction['labels']) == 0: | |
error("No prediction available. Please upload a BPMN image or decrease the detection score threshold.") | |
else: | |
with prediction_result_placeholder.container(): | |
if is_mobile: | |
display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width)) | |
else: | |
with st.expander("Show result of prediction"): | |
display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width)) | |
# Provide additional options for modification if not on mobile | |
if not is_mobile: | |
with additional_options_placeholder.container(): | |
state = modify_results() | |
# Display BPMN modeler options and result | |
with modeler_placeholder.container(): | |
modeler_options(is_mobile) | |
display_bpmn_modeler(is_mobile, screen_width) | |
else: | |
# Clear placeholders if no predictions are available | |
prediction_result_placeholder.empty() | |
additional_options_placeholder.empty() | |
modeler_placeholder.empty() | |
# Create space for scrolling | |
for _ in range(50): | |
st.text("") | |
# Force garbage collection | |
gc.collect() | |
if __name__ == "__main__": | |
print('Starting the app...') | |
main() | |