Spaces:
Running
Running
import xml.etree.ElementTree as ET | |
from modules.utils import class_dict | |
from xml.dom import minidom | |
from modules.utils import error | |
from modules.OCR import analyze_sentiment | |
def rescale(scale, boxes): | |
""" | |
Rescale the coordinates of the bounding boxes by a given scale factor. | |
Args: | |
scale (float): The scale factor to apply. | |
boxes (list): List of bounding boxes to be rescaled. | |
Returns: | |
list: Rescaled bounding boxes. | |
""" | |
for i in range(len(boxes)): | |
boxes[i] = [boxes[i][0] * scale, boxes[i][1] * scale, boxes[i][2] * scale, boxes[i][3] * scale] | |
return boxes | |
def create_BPMN_id(data): | |
""" | |
Create unique BPMN IDs for each element in the data based on their types. | |
Args: | |
data (dict): Dictionary containing labels and links of elements. | |
Returns: | |
dict: Updated data with BPMN IDs assigned. | |
""" | |
enum_end, enum_start, enum_task, enum_sequence, enum_dataflow, enum_messflow, enum_messageEvent, enum_exclusiveGateway, enum_parallelGateway, enum_pool = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | |
BPMN_name = [class_dict[data['labels'][i]] for i in range(len(data['labels']))] | |
for idx, Bpmn_id in enumerate(BPMN_name): | |
if Bpmn_id == 'event': | |
if data['links'][idx][0] is not None and data['links'][idx][1] is None: | |
data['BPMN_id'][idx] = f'end_event_{enum_end}' | |
enum_end += 1 | |
elif data['links'][idx][0] is None and data['links'][idx][1] is not None: | |
data['BPMN_id'][idx] = f'start_event_{enum_start}' | |
enum_start += 1 | |
elif Bpmn_id == 'task' or Bpmn_id == 'dataObject': | |
data['BPMN_id'][idx] = f'task_{enum_task}' | |
enum_task += 1 | |
elif Bpmn_id == 'sequenceFlow': | |
data['BPMN_id'][idx] = f'sequenceFlow_{enum_sequence}' | |
enum_sequence += 1 | |
elif Bpmn_id == 'messageFlow': | |
data['BPMN_id'][idx] = f'messageFlow_{enum_messflow}' | |
enum_messflow += 1 | |
elif Bpmn_id == 'messageEvent': | |
data['BPMN_id'][idx] = f'message_event_{enum_messageEvent}' | |
enum_messageEvent += 1 | |
elif Bpmn_id == 'exclusiveGateway': | |
data['BPMN_id'][idx] = f'exclusiveGateway_{enum_exclusiveGateway}' | |
enum_exclusiveGateway += 1 | |
elif Bpmn_id == 'parallelGateway': | |
data['BPMN_id'][idx] = f'parallelGateway_{enum_parallelGateway}' | |
enum_parallelGateway += 1 | |
elif Bpmn_id == 'dataAssociation': | |
data['BPMN_id'][idx] = f'dataAssociation_{enum_sequence}' | |
enum_dataflow += 1 | |
elif Bpmn_id == 'pool': | |
data['BPMN_id'][idx] = f'pool_{enum_pool}' | |
enum_pool += 1 | |
return data | |
def check_end(link): | |
""" | |
Check if a link represents an end event. | |
Args: | |
link (tuple): A link containing indices of connected elements. | |
Returns: | |
bool: True if the link represents an end event, False otherwise. | |
""" | |
if link[1] is None: | |
return True | |
return False | |
def connect(data, text_mapping, i): | |
""" | |
Connect elements based on their links and generate the corresponding text mapping. | |
Args: | |
data (dict): Data containing links and BPMN IDs. | |
text_mapping (dict): Mapping of BPMN IDs to their text descriptions. | |
i (int): Index of the current element. | |
Returns: | |
tuple: Current text, next texts, and next ID. | |
""" | |
next_text = [] | |
target_idx = data['links'][i][1] | |
# Check if the target index is valid | |
if target_idx == None or target_idx >= len(data['links']): | |
error('There may be an error with the Vizi file, care when you download it.') | |
return None, None, None | |
current_id = data['BPMN_id'][i] | |
current_text = text_mapping[current_id] | |
next_idx = data['links'][target_idx][1] | |
next_id = data['BPMN_id'][next_idx] | |
if next_id.split('_')[0] == 'exclusiveGateway': | |
for idx, link in enumerate(data['links']): | |
if link[0] == next_idx and link[1] is not None: | |
next_text.append(text_mapping[data['BPMN_id'][link[1]]]) | |
elif next_id.split('_')[0] == 'parallelGateway': | |
for idx, link in enumerate(data['links']): | |
if link[0] == next_idx and link[1] is not None: | |
next_text.append(text_mapping[data['BPMN_id'][link[1]]]) | |
else: | |
next_text.append(text_mapping[next_id]) | |
return current_text, next_text, next_id | |
def check_start(val): | |
""" | |
Check if a link represents a start event. | |
Args: | |
val (tuple): A link containing indices of connected elements. | |
Returns: | |
bool: True if the link represents a start event, False otherwise. | |
""" | |
if val[0] is None: | |
return True | |
return False | |
def find_merge(bpmn_id, links): | |
""" | |
Identify merge points in the BPMN diagram. | |
Args: | |
bpmn_id (list): List of BPMN IDs. | |
links (list): List of links between elements. | |
Returns: | |
list: List indicating merge points. | |
""" | |
merge = [] | |
for idx, link in enumerate(links): | |
next_element = link[1] | |
if next_element is None: | |
merge.append(None) | |
continue | |
next_object = links[next_element][1] | |
if next_object is None: | |
merge.append(None) | |
continue | |
if bpmn_id[next_object].split('_')[0] == 'parallelGateway': | |
merge.append(bpmn_id[next_object]) | |
else: | |
merge.append(None) | |
merge_elements = merge.copy() | |
for idx, element in enumerate(merge): | |
if element is None: | |
merge_elements[idx] = False | |
continue | |
# Count how many times the element is in the list | |
count = merge.count(element) | |
if count > 1: | |
merge_elements[idx] = True | |
else: | |
merge_elements[idx] = False | |
return merge_elements | |
def find_positive_end(bpmn_ids, links, text_mapping): | |
""" | |
Find the positive end event based on sentiment analysis. | |
Args: | |
bpmn_ids (list): List of BPMN IDs. | |
links (list): List of links between elements. | |
text_mapping (dict): Mapping of BPMN IDs to their text descriptions. | |
Returns: | |
str: BPMN ID of the positive end event. | |
""" | |
emotion_data = [] | |
for idx, bpmn_id in enumerate(bpmn_ids): | |
if idx >= len(links): | |
continue | |
if check_end(links[idx]) and (bpmn_id.split('_')[0] in ['event', 'message']): | |
# Perform sentiment analysis and get the highest scoring emotion and its score between positive and negative | |
highest_emotion, highest_score = analyze_sentiment(text_mapping[bpmn_id]) | |
emotion_data.append((bpmn_id, highest_emotion, highest_score)) | |
# Sort by emotion label with 'positive' first and 'negative' second, | |
# then by score in descending order | |
sorted_emotions = sorted(emotion_data, key=lambda x: (x[1] != 'positive', -x[2])) | |
return sorted_emotions[0][0] if len(sorted_emotions) > 0 else None | |
def find_best_direction(texts_list): | |
""" | |
Find the best direction based on sentiment analysis. | |
Args: | |
texts_list (list): List of texts to analyze. | |
Returns: | |
str: Text with the best (positive) sentiment. | |
""" | |
emotion_data = [] | |
for text in texts_list: | |
highest_emotion, highest_score = analyze_sentiment(text) | |
emotion_data.append((text, highest_emotion, highest_score)) | |
# Sort by emotion label with 'positive' first and 'negative' second, | |
# then by score in descending order | |
sorted_emotions = sorted(emotion_data, key=lambda x: (x[1] != 'positive', -x[2])) | |
return sorted_emotions[0][0] if len(sorted_emotions) > 0 else None | |
def create_wizard_file(data, text_mapping): | |
""" | |
Create a wizard file for BPMN modeling based on the provided data and text mappings. | |
Args: | |
data (dict): Data containing BPMN elements and their properties. | |
text_mapping (dict): Mapping of BPMN IDs to their text descriptions. | |
Returns: | |
str: Pretty-printed XML string of the wizard file. | |
""" | |
not_change = ['pool','sequenceFlow','messageFlow','dataAssociation'] | |
# Add a name into the text_mapping when there is no name | |
for idx, key in enumerate(text_mapping.keys()): | |
if text_mapping[key] == '' and key.split('_')[0] not in not_change: | |
text_mapping[key] = f'unnamed_{key}' | |
root = ET.Element('methodAndStyleWizard') | |
modelName = ET.SubElement(root, 'modelName') | |
modelName.text = 'My Diagram' | |
author = ET.SubElement(root, 'author') | |
author.text = 'sketch-to-BPMN' | |
# Add pools to the collaboration element | |
for idx, (pool_index, keep_elements) in enumerate(data['pool_dict'].items()): | |
pool_id = f'participant_{idx+1}' | |
pool = ET.SubElement(root, 'processName') | |
pool.text = text_mapping[pool_index] | |
processDescription = ET.SubElement(root, 'processDescription') | |
first = False | |
for idx, Bpmn_id in enumerate(data['BPMN_id']): | |
# Start Event | |
element_type = Bpmn_id.split('_')[0] | |
if element_type == 'message': | |
eventType = 'Message' | |
elif element_type == 'event': | |
eventType = 'None' | |
if idx >= len(data['links']): | |
continue | |
if check_start(data['links'][idx]) and (element_type == 'event' or element_type == 'message'): | |
if text_mapping[Bpmn_id] == '': | |
text_mapping[Bpmn_id] = 'start' | |
startEvent = ET.SubElement(root, 'startEvent', attrib={'name': text_mapping[Bpmn_id], 'eventType': eventType, 'isRegular': 'True'}) | |
requestMessage = ET.SubElement(root, 'requestMessage') | |
requester = ET.SubElement(root, 'requester') | |
endEvents = ET.SubElement(root, 'endStates') | |
positive_end = find_positive_end(data['BPMN_id'], data['links'], text_mapping) | |
if positive_end is not None: | |
print("Best end is: ", text_mapping[positive_end]) | |
# Add end states event to the collaboration element | |
for idx, Bpmn_id in enumerate(data['BPMN_id']): | |
# End States | |
if idx >= len(data['links']): | |
continue | |
if check_end(data['links'][idx]) and (Bpmn_id.split('_')[0] == 'event' or Bpmn_id.split('_')[0] == 'message'): | |
if text_mapping[Bpmn_id] == '': | |
text_mapping[Bpmn_id] = '(unnamed)' | |
if Bpmn_id == positive_end: | |
ET.SubElement(endEvents, 'endState', attrib={'name': text_mapping[Bpmn_id], 'eventType': 'None', 'isRegular': 'True'}) | |
else: | |
ET.SubElement(endEvents, 'endState', attrib={'name': text_mapping[Bpmn_id], 'eventType': 'None', 'isRegular': 'False'}) | |
# Add activities to the collaboration element | |
activities = ET.SubElement(root, 'activities') | |
for idx, activity_name in enumerate(data['BPMN_id']): | |
if activity_name.startswith('task'): | |
activity = ET.SubElement(activities, 'activity', attrib={'name': text_mapping.get(activity_name, activity_name), 'performer': ''}) | |
endStates = ET.SubElement(activity, 'endStates') | |
current_text, next_text, next_id = connect(data, text_mapping, idx) | |
if next_text is not None and len(next_text) == 1: | |
ET.SubElement(endStates, 'endState', attrib={'name': next_text[0], 'isRegular': 'True'}) | |
elif next_text is not None and len(next_text) >= 2 and next_id.split('_')[0] == 'exclusiveGateway': | |
best_direction = find_best_direction(next_text) | |
if best_direction is not None: | |
print("Best direction is: ", best_direction) | |
for i in range(len(next_text)): | |
if next_text[i] == best_direction: | |
ET.SubElement(endStates, 'endState', attrib={'name': next_text[i], 'isRegular': 'True'}) | |
else: | |
ET.SubElement(endStates, 'endState', attrib={'name': next_text[i], 'isRegular': 'False'}) | |
ET.SubElement(activity, 'subActivities') | |
ET.SubElement(activity, 'subActivityFlows') | |
ET.SubElement(activity, 'messageFlows') | |
merge_object = find_merge(data['BPMN_id'], data['links']) | |
activityFlows = ET.SubElement(root, 'activityFlows') | |
for i, link in enumerate(data['links']): | |
# create flow with start event | |
if link[0] is None and link[1] is not None and (data['BPMN_id'][i].split('_')[0] == 'event' or data['BPMN_id'][i].split('_')[0] == 'message'): | |
current_text, next_text, _ = connect(data, text_mapping, i) | |
if current_text is None or next_text is None: | |
continue | |
ET.SubElement(activityFlows, 'activityFlow', attrib={'startEvent': current_text, 'endState': '---', 'target': next_text[0], 'isMerging': 'False', 'isPredefined': 'True'}) | |
continue | |
# create flow with tasks | |
if link[0] is not None and link[1] is not None and data['BPMN_id'][i].split('_')[0] == 'task': | |
current_text, next_text, next_id = connect(data, text_mapping, i) | |
if current_text is None or next_text is None: | |
continue | |
if merge_object[i] == True: | |
merge = 'True' | |
else: | |
merge = 'False' | |
if len(next_text) == 2 and next_id.split('_')[0] == 'exclusiveGateway': | |
ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': next_text[0], 'target': next_text[0], 'isMerging': 'False', 'isPredefined': 'True'}) | |
ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': next_text[1], 'target': next_text[1], 'isMerging': 'False', 'isPredefined': 'True'}) | |
elif len(next_text) > 1 and next_id.split('_')[0] == 'parallelGateway': | |
for next in next_text: | |
ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': '---', 'target': next, 'isMerging': merge, 'isPredefined': 'True'}) | |
elif len(next_text) == 1: | |
ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': '---', 'target': next_text[0], 'isMerging': merge, 'isPredefined': 'True'}) | |
else: | |
ET.SubElement(activityFlows, 'activityFlow', attrib={'activity': current_text, 'endState': '---', 'target': next_text, 'isMerging': merge, 'isPredefined': 'True'}) | |
ET.SubElement(root, 'participants') | |
# Pretty print the XML | |
pwm_str = ET.tostring(root, encoding='utf-8', method='xml') | |
pretty_pwm_str = minidom.parseString(pwm_str).toprettyxml(indent=" ") | |
return pretty_pwm_str | |