BenjiELCA commited on
Commit
5fc2362
·
1 Parent(s): caf799a
Files changed (1) hide show
  1. app.py +3 -42
app.py CHANGED
@@ -10,14 +10,7 @@ from streamlit_drawable_canvas import st_canvas
10
  from modules.streamlit_utils import *
11
  from glob import glob
12
 
13
- import os
14
- import subprocess
15
-
16
- # Run the setup script if the package directory does not exist
17
- if not os.path.exists('Streamlit-Image-Annotation'):
18
- subprocess.run(['bash', 'setup.sh'], check=True)
19
-
20
- from streamlit_image_annotation import detection
21
  from modules.toXML import create_XML
22
 
23
  def configure_page():
@@ -122,39 +115,7 @@ def launch_prediction(cropped_image, score_threshold, is_mobile, screen_width):
122
 
123
  from modules.eval import develop_prediction, generate_data
124
  from modules.utils import class_dict
125
- def modify_results(percentage_text_dist_thresh=0.5):
126
- with st.expander("Method and Style modification (beta version)"):
127
- label_list = list(class_dict.values())
128
- bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes']]
129
- for i in range(len(bboxes)):
130
- bboxes[i][2] = bboxes[i][2] - bboxes[i][0]
131
- bboxes[i][3] = bboxes[i][3] - bboxes[i][1]
132
- labels = [int(label) for label in st.session_state.prediction['labels']]
133
- uploaded_image = prepare_image(st.session_state.crop_image, new_size=(1333, 1333), pad=False)
134
- scale = 2000 / uploaded_image.size[0]
135
- new_labels = detection(
136
- image=uploaded_image, bboxes=bboxes, labels=labels,
137
- label_list=label_list, line_width=3, width=2000, use_space=False
138
- )
139
-
140
- if new_labels is not None:
141
- new_lab = np.array([label['label_id'] for label in new_labels])
142
-
143
- # Convert back to original format
144
- bboxes = np.array([label['bbox'] for label in new_labels])
145
- for i in range(len(bboxes)):
146
- bboxes[i][2] = bboxes[i][2] + bboxes[i][0]
147
- bboxes[i][3] = bboxes[i][3] + bboxes[i][1]
148
 
149
- scores = st.session_state.prediction['scores']
150
- keypoints = st.session_state.prediction['keypoints']
151
- #print('Old prediction:', st.session_state.prediction['keypoints'])
152
- boxes, labels, scores, keypoints, flow_links, best_points, pool_dict = develop_prediction(bboxes, new_lab, scores, keypoints, class_dict, correction=False)
153
-
154
- st.session_state.prediction = generate_data(st.session_state.prediction['image'], boxes, labels, scores, keypoints, flow_links, best_points, pool_dict, class_dict)
155
- st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
156
-
157
- #print('New prediction:', st.session_state.prediction['keypoints'])
158
 
159
 
160
  def display_bpmn_modeler(is_mobile, screen_width):
@@ -199,8 +160,8 @@ def main():
199
  with st.spinner('Waiting for result display...'):
200
  display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width))
201
 
202
- if not is_mobile:
203
- modify_results()
204
 
205
  with st.expander("Options for BPMN modeler"):
206
  modeler_options(is_mobile)
 
10
  from modules.streamlit_utils import *
11
  from glob import glob
12
 
13
+ #from streamlit_image_annotation import detection
 
 
 
 
 
 
 
14
  from modules.toXML import create_XML
15
 
16
  def configure_page():
 
115
 
116
  from modules.eval import develop_prediction, generate_data
117
  from modules.utils import class_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
 
 
 
 
 
 
 
 
 
119
 
120
 
121
  def display_bpmn_modeler(is_mobile, screen_width):
 
160
  with st.spinner('Waiting for result display...'):
161
  display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width))
162
 
163
+ #if not is_mobile:
164
+ #modify_results()
165
 
166
  with st.expander("Options for BPMN modeler"):
167
  modeler_options(is_mobile)